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CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement

MULTIPLY — - BY - - TO GET

TO GET -~ BY < DIVIDE

_ angstrom 1.000000 x E -10 meters (m) !

atmosphere (normal) 1.01325 x E +2 kilo pascal (kPa) ‘
bar 1.00000C x E +2 kilo pascal (kPa)
barn 1.000000 x E -28 meter? (m?)

. British thermal unit (thermochemical) 1.054350 x E +3 jonle (J)

" calorie (thermochemical) 4.184000 joule (3} :

" cal (thermochemical) / cm? 4.184000 x E -2 mega joule/m? (MJ/m?)

i curie 3.700000 x E +1 *giga becquerel (GBq)

' degree (angle) 1.745329 x E -2 radian (rad) !

' degree Farenheit ty = (tp + 459.67)/1.8 | degree kelvin (K) !

i electron voit 1.60219 x E -19 joule (J} !

"erg 1.000000 x E -7 joule (J) \

. erg/second 1.000000 x E -7 watt (W) !
faot 3.048000 x E -1 meter (m) '

. fost-pound -force 1.355818 joule (J)

, galion (U.S. liquid) 3.785412 x E -3 meter® (m?) l

inch 2.540000 x E -2 meter (m) 1.

" jerk 1.000000 x E +9 joule (J) ‘

| joule/kilogram (J/kg) (radiation dose absorbed) | 1.000000 Gray (Gy) :

| kilotons 4.183 terajoules

L kip (1000 1bf) 4.448222 x E +3 newton (N) :

" kip/inch? (ksi) 6.894757 x E +3 kilo pascal (kPa) |
ktap | 1.000000 x E +2 newton-second/m? (N-g8/m?)
micron | 1.000000 x E -6 meter (m)

" mil | 2.540000 « E -5 meter (m)

- mile (international) 1.609344 x E +3 meter {m) .

i vunce 2.834952 x E -2 kilogram (kg)
pound-force {ibs avoirdupois) 4.448222 newton (N)

. pound-force inch 1.129848 x E -1 newton-meter (N m) !

I pound-force/inch 1.751268 x E +2 newton/meter (N/m)

i pound-force/font3 4.788026 x E -2 kilo pascal (kPa) 1

' pound-force/inch? (psi) 6.894757 kilo pascal (kPa)

1 prund-mass (lbm avoirdupois) 4.535924 x E -1 kilogram (kg)

i prund-masa-foot? (moment of inertia) 4.21401) x E -2 kilogram-meter? (kg m?)

‘I pound-mass; foot3 1.601846 x E +1 kilogram /meter?® (kg/m?3)

Y rad (radiation dose abaorbed) 1.000000 x E -2 **Gray {Gy)

| roentgen , 2.579760 x E -4 coulomb/kilogram (C/kg)

- shake | 1.000000 x E -8 second (s)

¢ slug ] 1.459390 x E +1 | kilogram (kg)

" tore (mmm Hg, 0° C) | 1.333220 « E -1 I kilo pascal (kPa)

" The Becquerel (Bq) is the SI unit of radicactivity; 1 Bq = 1 event/s.
**The Gray (Gy) is the SI unit of absorbed radiation.
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SECTION 1
INTRODUCTION

Satellite communications systems that utilize transionospheric propagation links
mayv be subject to severe performance degradation when the ionosphere is highly
disturbed by high altitude nuclear explosions [Arendt and Soicher 1964; King and
Fleming 1980] or by chemical releases [Davis et al. 1974; Wolcott et al. 1978]. During
these events, the increased electron concentrations and the irregular structure of the
ionization can lead to intense Rayleigh signal scintillation at the radio frequencies (RF)
used for satellite communication links and space radars.

Under severe scintillation conditions, the signal incident at the receiver can vary
randomly in amplitude, phase, time-of-arrival, and angle-of-arrival. If all frequency
components of the signal vary essentially identically with time, the propagation channel
is referred to as nonselective or flat fading. When the scintillations exhibit statistical
decorrelation at ditfferent frequencies within the signal bandwidth, the channel is
referred to as frequency selective. Frequency selective scintillations are therefore
encountered when the signal bandwidth exceeds the frequency selective bandwidth of
the channel. When the scintillations exhibit statistical decorrelation across the face of
an aperture antenna, the channel may also be referred to as spatially selective.
Spatially selective scintillations are therefore encountered when the antenna aperture
size exceeds the decorrelation distance of the incident signal.

Under conditions where the signal is spatially selective, the antenna beamwidth is
smaller than the angle-of-arrival fluctuations and the effect of the antenna is to
attenuate the incident signal that is arriving at off-boresight angles. In the spatial
domain, the incident electric field is somewhat decorrelated across the face of the
antenna. The induced voltages in the antenna then do not add coherently as they would
for an incident plane wave, resulting in a loss in the gain of the antenna. Because of
this angular filtering or spatial selectivity, the second-order statistics of the signal at the
output of the antenna will be different than those of the incident signal.

The effects of antennas on sigrals that have propagated through randomly
ionized media have been reported by Wittwer [1982], Knepp [1985], and Dana [1986].
This report is an extension of the latter reference, and its purpose is to describe the
general model for temporal fluctuations that has recently been developed by Dr. Leon
A. Wittwer of the Defense Nuclear Agency. A review of the basic theory of RF
propagation through random media is presented, and the channel simulation technique
for the general model is described.

The starting point is the generalized power spectral density (GPSD). The first
part of this report is a review of the derivation of the GPSD. The intent of this review
is to give the reader an understanding of the underlying physics that are contained in
the GPSD and an understanding of the assumptions used to calculate the GPSD. The
first part of this review follows Tatarskii {1971, §64-65]. The discussion of the
general model is new in this report.

The derivation of the GPSD starts with Maxwell's equations from which the
parabolic wave equation is derived. The parabolic wave equation can be solved to give

#
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the received electric field ror a specific electron density distribution in the ionosphere.
However, the electron density distribution is a raniom process so the received electric
field is also a random process. The parabolic wave equatiion is therefore used to derive
an equation for the two-position, two-frequency, two-time mutual coherence function
of the electric field, I'(dr,8w,dt). The solution of the differential equation for T,
which is also a solution of Maxwell's equations, then provides a description of the
second-order statistics of the received electric field. The Fourier transform of the
mutual coherence function is the GPSD of the received signal.

Once the GPSD is obtained for the general model, it is used to compute the mean
power, decorrelation time, and frequency selective bandwidth of the signal out of
anisotropic antennas with arbitrary pointing angles relative to the line-of-sight. These
results are taken from Frasier [1988]. Several examples are given that illustrate the
general model and the cffects of antenna pointing.

In Section 4 an analytical/numerical technique is described that is used to
generate realizations of the impulse response function of the signal after propagation
through randomly ionized media and reception by multiple antennas. The statistical
realizations of the signal at the outputs of multiple antennas are assumed to have
Rayleigh amplitude statistics and are therefore valid under strong-scattering conditions.
The spatial and frequency correlation properties of the realizations are given by the
mutual coherence function. These realizations of the impulse response function are
then used to construct the received signal and may be used to exercise simulations of
transionospheric communications links or space radars.

(39




SECTION 2
THEORY

The starting point for this discussion of the general model is the generalized
power spectral density (GPSD). This section presents a review of the derivation of the
GPSD and discusses the physics that are contained in this important function.

In deriving the GPSD, two key approximations are usually made about the
spatial and temporal electron density fluctuations that cause the scattering in the
ionosphere. The first of these is the delta-layer approximation which requires that the
scattering occur in an infinitesimally thin layer normal to the line-of-sight. This
approximation has been relaxed in the calculations of Witiwer [1982] and Knepp [1983]
and has been found to result in small errors in the GPSD provided that the propagation
parameters (frequency selective bandwidth, decorrelation time and decorrelation
distance) that characterize the channel are properly specified. The delta-layer
approximation is not, in general, adequate to calculate the propagation parameters.

The second approximation that is usually made is Taylor's frozen-in hypothesis
which treats the ionization fluctuations or striations as rigid “frozen-in” structures that
drift across the line-of-sight. Under this model there is strong coupling between the
spatial and temporal variations of the random electric field that is incident at the plane
of the receiver. Wittwer [1988] has recently proposed a “general model” that smoothly
varies between the frozen-in model and a turbulent model where the temporal and
spatial ionization fluctuations are uncorrelated. The GPSD for the general model will
be calculated in this section.

An analytic solution is obtained in this section for the two-position, two-
frequency, two-time mutual coherence function I'(dr,0,8t) of the complex electric
field incident on the plane of the receiving antenna. This solution is valid for arbitrary
line-of-sight geometries relative to the ionization structures in the ionosphere that cause
the scattering of the RF wave. The mutual coherence function then provides the basis
for the antenna aperture effects calculations and for the statistical signal generation
techniques discussed in subsequent sections of this report. The Fourier transform of
the mutual coherence function is the GPSD of the received signal.

2.1 PARABOLIC WAVE EQUATION.

Consider a monochromatic spherical wave with an electric field E(r,w,t) which
is a function of position r, carrier radian frequency ®, and time t. The wave
originates from a transmitter located at r = (0,0,-z;) and propagates in free space in the
positive z direction until it is incident on an irregularly ionized layer which extends
from 0 < z < L and is infinite in the x-y plane. After emerging from the layer at
z = L, the wave propagates in free space to a receiver located at r = (0,0,z;). This
geometry is shown in Figure 1.




2 Transmitter

Q. Scattering
~ Layer

* Receiver

Figure 1. Propagation geometry.

The propagation of the wave is governed by Maxwell's equations:

10H

Vx£+c8t =0 VE =0 (1)
e JE

Vx}{-EX:O VH =0

where ¢ is the speed of light in vacuum, H is the magnetic field, and € is the dielectric
constant.

The dielectric constant of the propagation medium undergoes random
fluctuations with a characteristic frequency which is assumed to be small when
compared to the carrier frequency of the wave. With this assumption, the electric and
magnetic fields may be written as the product of slowly-varying complex envelopes,
denoted E and H, times exp(imt):

E(r.o = E(r,o.t) eiot (2)
H(r,o,) = H(r.ot) eiot .

Inserting these into Maxwell’s equations gives
VxE+ikH =0 (3a)

VxH-iekE = 0 (3b)




where k = w/c is the wave number of the carrier. After applying the curl operator to
Equation 3a and substituting Equation 3b for the V x H term, the equation for E
becomes

VxVxE-ek’E =0 . (4)

The vector identity V x V x E = V(V-E) - V°E reduces the curl curl term in Equation
4 with the result

V(VE)-V'E-ek’E =0 . (5)
The V-E term is reduced by expanding the divergence equation for E:

VeE = e VE+E Ve =0 (6)
or

VE = -E Vi(neg) . (7)
The wave equation for the complex envelope of the electric field then becomes

V'E+ek’E+V[EV(ing)] =0 . (8)

The dielectric constant € in a plasma at radio frequencies is given approximately

o
- 1.2 9
£ o (9)

where the plasma frequency is
0p = 4mre ¢’ ne(ry) . (10)

The quantity re is the classical electron radius (re = 2.8179x10°13 m) and ne(r,t) is the
free electron density as a function of position and time. Equation 9 is valid when the
carrier frequency 1is large compared to the plasma frequency. The free electron
density is a random variable that will be represented as a mean value plus a random
variation:

ne(r,t) = (ne) + Ane(r,t) . (11)

The electron density fluctuation Ane(r.t) is assumed to be a zero mean random process.
). . .
The term € k* in the wave equation may now be rewrntien as

ek = (k) (1-g)) (12)

where




(13)

and

a0l (wp)
o ‘[ (ne) - (0d)] (9

The guantity ((x)f)) is the plasma frequency evaluated at the mean electron density.

The magnitude of the gradient term V(In €) in the wave equation may be
estimated as follows:

e 5| - e -

(15)

where L, is the scale size of the electron density fluctuations. As long as Ly >> A,

where A is the RF wavelength, the term V[E-V(In €)] is small compared to ek’E and
may be ignored. The steps that follow are therefore only valid when the scale size of
the electron density fluctuations is large compared to the carrier wavelength. With this
restriction, the wave equation takes the Heimholtz form:

VE + (k)1 -g)E =0 . (16)

Now consider the complex components of the electric field and let
E(r,ot) = U(r,o,t) exp [ I (k(z")) dz' ] . (17)

This scalar equation for E may be used because it is usual for trans-ionospheric RF
links to be circularly polarized. It is therefore not necessary to carry out separate
calculations for each polarization state. The exponential term in Equation 17
represents the dispersive effects of the smooth plasma and will be discussed later in this
section. The electric field envelope U contains the diffractive effects that are of
interest under strong-scattering conditions. Substituting Equation 17 for E(r,w,t) in
the wave equation gives the following differential equation for U:

U .9
ViU + %2—2 - 2i¢k) 5% - (k)zelU =0 (18)
where
o
Vi = ﬁ+a—y—2 (19)

The complex amplitude U varies as the electron density fluctuations. The second
derivative 9°U/dz? is then the order of U/L3. On the other hand, the term (k) dU/0z
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varies as U/AL;. As long as A << L, the second derivative is small compared to the
first derivative and may be ignored. This is equivalent to neglecting reflected rays and
1s called the “parabolic™ approx:mation. The parabolic wave equation 1s then

ViU - 2i<k)-aa—lzj-(k)ze,U =0 . (20)

[t will be seer that this parabolic or small-angle scattering approximation is robust in
that it degrad=s gracefully as the scattering angles get large. The source term g,U in
the parabolic wave equation is a function of frequency and the electron density
fluctuations. Different frequencies within a signal bandwidth may therefore propagate
differently ihrough the same ionization structure. When this happens, the propagation
channel is said to be frequency selective.

2.2 TRANSPORT EQUATION.

A partial differential equation for the two-position, two-frequency, two-time
mutual coherence function is derived from the parabolic wave equation in this section.
This transport equation is derived using the Novikov theorem which requires that the
electron density fluctuations be normally distributed. However, Lee and Jokipii
[1975a] give an alternative derivation that relaxes this assumption.

2.2.1 First Form of the Transport Equation.

The two-position, two-frequency, two-time mutual coherence function is defined
in a plane normal to the line-of-sight as

I = <U(pl’sz1»tl) U*(vastthZ» (21)
where p is a two-dimensional position vector in the plane normal to the line-of-sight.

In order to obtain an equation for I', the parabolic wave equation for
U(py,z,my,t;) is multiplied by U*(p,,z,w,,t5). This results in the following equation:

1 . dU(p.2,04,1))
i VAUGL 200U o z.0nt) - 2 PLESLL Ux(ppz.opty)
- k] El(pl,z,wl,tl) U(plvzvo)l’tl) U*(pz,Z,(l)z,[2) =0 (223)

where k;j is given by Equation 13 evaluated at frequency j, €,(pj,z,0;,tj) is given by
Equation 14, and the Laplacian is given by Equation 19 evaluated at pj. A similar
equation can be written down by interchanging the subscripts 1 and 2 and by taking the
complex conjugate with the result:

| CdU*(p;,z,0,,t
k. V LUX(p5,2,05,1)U(P1,2,0,t) + 21 — (pgzl_zz) Up,z,04,ty)
- ks €1(p2,2,05,1) U¥(py,z,05,t) Ulprz,m4,ty) = 0 . (22b)

Upon subtracting Equation 22b from Equation 22a and taking the expectation value,
the equation for I" is




1 2 1 2 .ol
k—l'VLlr'Eszr-zla—i
- ki (& 1(pr.z,01,t) Ulpr,2,00).t)) U*(psy,z,m,,15)) (23)

+ ky(€1(py,z,w2.1) UX(py,z,05,t) Up,z,0,t)) = 0 .

The expectation of the two source terms in this equation must be carefully
evaluated. They involve the product of UU* and €, where €, is proportional to the
fluctuations in the electron density. However, the electric {ield complex envelope U is
also a function of the electron density fluctuations that are encountered along the
propagation path. Therefore U and €, are correlated.

2.2.2 Novikov Theorem.

The Novikov theorem is used to evaluate the source terms in Equation 23. This
theorem is proven in Tatarskii [1971, §65] and Ishimaru [1978, pp. 457-458). The
theorem states that

Of,(f
(FL(RITA(E)) = J(fx(R)fl(R'))<5—ff%> a"R' 24

where f;(R) is a zero-mean, normally-distributed random function of the n-
dimensional vector R, fo(f)) is a function of f;, and 8f,/8f, is a functional derivative.
In applying this theorem, f, = €, and f, = UU*. The theorem is proven by expanding
f-(f,) in a Taylor series.

2.2.3 Source Terms.

Before proceeding with the evaluation of the source terms, it will be convenient
to write €, as the product of a frequency term and a term that varies only with space
and time:

€,(p.z,0,0) = &(p.z,1) B(w) (25)
where

. Ane(p,z,t)

Sp.zt) = ”?TF;)—“ (26)

1s a random function of the electron density fluctuations and

(wp) .
Blw) = = N (27)
w- - <"’b/

1s a deterministic function of frequency and the mean free electron density.




For the first source term in Equation 23 a straiehtforward application of the
Novikov theorem yields:

Si = kifw) E(py.z.ty) Ulpy,z,0p.t) UXpaz,wyts)) (28)
=k Blop [dz [dipr [dr GprztEPZ.0)

<8

< {°

At this point the electron density fluctuations are assumed to be stationary and
delta correlated along the z axis. This Markov assumption has the mathematical form

P
(

Z,0 ) U 6U*( ,Z, ,Iz)
‘L)—Z—)———— *(pz,l,ﬂ)z,[z) + U(pl,z,wl,ll) 6&??)‘,2',[2’) >

O}\
S

(S(p.z.H3(p',Z 1)) = 8(z-2') Ae(p-p'.t-t) (29)

where 8(-) is the Dirac delta function. The structure function Ag(p-p't-t') is the
autocorrelation function of the electron density fluctuations. The Markov assumption
ts discussed in some detail by Tatarskii [1971, §64| and is based on the fact that
fluctuations in the dielectric censiant in the direction of propagation have little effect
on the transverse fluctuation characteristics of the electric field. It is the fluctuations
of the dielectric constant transverse to the direction of propagation that dominate the
scattering and the transverse fluctuations of the electric field.

Under the assumption of small-angle scattering for which the parabolic wave
equation is valid, the component of the electric field traveling in the backward
direction will be negligible compared to the component traveling in the forward
direction. The electric field U(p,z,®,t) may then be assumed to depend on §(p',z'.t')
only for z' < z (i.e. the electric field does not depend on electron density irregularities
that have not yet been encountered along the forward propagation path). Also,
U(p,z,w,t) depends on &(p',z',t') only for t' < t (i.e. the electric field does not depend
on irregularities that have not yet occurred). Thus dU(p,z,m,t)/dE(p',z',t") is equal to
O forz >z and fort' > 1.

The source function S; may now be rewritten as

z oo t

Sy = ki) [dz 8(z-z) [d¥p [dv Ag(pi-p'ty-t) X (30)

OU(p.z,w,t)) dU*(p,,2,05,15)
< Se(p" 2 t) U*(p2,2,0y,t) + U(py,z,0),4) SE(p .z 1)

where {3; is given by Equation 27 evaluated at ;. Recalling that




" 1
J'S(x'-x)dx' = 5, (31)

the source term is further reduced to

o t

k >
S, = ‘2B‘ fd‘p‘ j'dt' Ag(py-ply-t) X (32)

<6U(plaz’(‘)l’[l‘)

8U*(p2,2,0.17)
dS(plzt))

* _
U (pz,Z,(l)z,tz) + U(pl’szlvtl) 6&(9',2,1')
The parabolic wave equation is used to evaluate the functional derivatives 6U/8E,.
Integrating this equation from -eo to z results in

Z
JVE Up.z",w.t)ydz" - 2ik) [U(p,z,m,t) - Ug(p,w)] - (33)

Z
(kM B(®) [&p,z') U,z o0ndz" = 0

where Ug(p,w) is the transmitted signal. After applying the operator &/8&(p',z',t),
where -e0 < 7' < z and -eo < t' < t, and noting that

SSOZ 5,59 5(p-p) B(1-1)

85 (p',z't) (34)
Equation 33 becomes
- 8U(p,z,m, ' ,
2i(k) gg%%_%) + (k) B(w) 8(p-p") 3(t-t) U(p,z,m,1)
Z
+ [Lap@zpan-vi ] % emda - o . 3
K

The lower limit of the integral in this equation is z' because dU(p,z,m,1)/dE(p'.z',t') is
zero for z < z'. Because the source term contains factors of the form
dU(p.z,w,1)/8E(p'.z,t'), z'is set equal to z in Equation 35 with the result

op.z.0) _ KRB 5 o 5ty UG,z

§(p'2.0) (36)
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After substituting this into Equation 32, the source term becomes

S, = sz J'ths(plptlt)r
x{l”&plp)a(nt) &5(020)5([21)} 37)

. 2 .
= %& Ag(0,0) T - ik,B, Py

g AsPrpat-t) T

A similar expression may be written down for the second source term in Equation 23:

S, = kyB(wy) (§(p2.z.ty) Ulpr,z,0y,t) U*(p2,z,m;,15)) (38)
1k
BB o B

2.2.4 Second Form of Transport Equation.

The transport equation for the mutual coherence function is now given by
combining Equations 37 and 38 with 23 with the result

81‘ i 1 1
3 * [ Vi 'k—vﬂ}r (39)

g [2K0aBiBa Az(P1p2-t) - (137 + K3BD) A0 T =
where Ag = Ag(0,0).

The differential equation for " will be solved by first letting I" equal I';)I"; where
'y is the free space solution to the transport equation. The well-known solution of the
wave equation for the electric field in free space (Eqn. 18 with £, = 0) may be written
down directly. The Fresnel approximation that z >> Ip! is then used to expand the
electric field and the free space solution I'y is computed. The quantity [y contains the
1/z% term that partly determines the mean power at the receiver. The next step is to
derive a differential equation for I} from Equation 39 and the free space solution. It
1s the mutual coherence function I'; that determines the second-order statistics of the
received signal.

2.2.4.1 Free Space Solution I'y. In free space and for spherical geometry, the
complex envelope of the electric field is

kl
E = EO e&p I(l'll r) (40)
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It is easy to verify that this is a solution of the wave equation with ¢, set to zero.

. ~ . R b R . .
Under the assumption of small-angle scattering, z= >> x“ + y~ in the region of interest
and Iri may be expanded as

22,2 eyt
rl = Vx ty'tet o= 2+ : (41)

“~

With this Fresnel approximation,

E ‘2 2
E = fexp(- 1k [z+ “,;Y_ ﬂ

% (42)
After recalling that U = exp (ikz) E, the free space mutual coherence tunction is
Iy = (U(py.2,0)) U¥(prz.wy) (43)
L Tk v ik 4y
= 2P 22 * 2 J

2.2.4.2 Differential Equation for I";. After substituting I = I',17, into the
transport equation and using Equation 43 for the free space solution, the equation for
Iy becomes

or; i , i 5
e fac Vol val (44)
‘)FL yir ol xpdly y,dly
‘z axl z ay1+ v4 ()x:+ 7 Dy'z_J'SIl = ()
where the source term is
] bl il 3 ]
S = g [2%ikaBiB2 Ag(pr-pati-ty) - (KiBT + k3B Ao (45)

In order for I"| to represent a statistically stationary random process in space,
frequency, and time, [} must be a function only of the differences p,-p,. ®;.0-, and
ti-t> . It s therefore useful to transform Equation 44 to sum and difterence spatial and
frequency coordinates:

X+ x2 yi+y2
X = 3 Y = 5
C=x-x2 n Yi-y2
S ‘)2 al s al ()2
Vo o= O e Vi = .4 3 ¢
CToaxt T oy SR o e




A
VeVa = G5x90 * avam

Ky + Kk,
ke = "5

After some manipulations, the equation for Iy reduccs to

al A0 2 Kdea 1

T, o+ (47)

07 4[\5 K3

o Lo a2
1_‘\8,\’ * Yyt Sor T nm]JrI’Sr‘ =0

The boundary condition for this cquation is that I} evaluated at z = -z¢ must be
cqual to unity independent of the other spatial coordinates. Also, the source term S
under most conditions is a function only of the difference coordinates. It will
therefore be assumed that Ty Is independent of X and Y. However, the source term
will be a tunction of X and Y if the spatial extent of the scattering region is small as,
for example, in a barium cloud. The assumption that I'; is independent of X and Y
then requires that the disturbed region in the ionosphere be large compared to the
region from which scattered signal energy is received.

The transport equation may he further reduced by noting that the 1/z term, when
7 is large, will be small compared to the other terms and may be neglected. The
transport equation for 1"y then becomes

JIy kg o L .
al-4k£—kjvdrl_5[1:()' (48)

2.3 DELTA-LAYER APPROXIMATION.

As an RF wave propagates through a thick, irregularly structured ionization
layer, the wave first suffers random phase perturbations due to random variations in
the index of refraction.  As the wave propagates farther, diffractive effects introduce
fluctuations in amplitude as well as phase. If the standard deviation G4 of the phase
fluctuations that are sutfered by the wave is large, then the amplitude fluctuations are
charactenized by a Ravleigh probability distribution when the wave emerges from the
laver. The delta-layer approximation assumes that the phase and amplitude fluctuations
are imparted on the wave in an infinitesimally thin layer. This assumption is consistent
with the Markov assumption made in deriving the differential equation for the mutual
coherence function,

An anualvtic solution for the two-position, two-frequency mutual coherence
function has been obtained for plane waves by Sreenivasiah, Ishimaru, and Horg
119761 for a thick ionization laver. Withwer [1979] extended this solution to tr at
spherical waves. The analytic form of this solution is sufficiently complex, however,
that the necessary Fourter transforms required to compute the GPSD cannot he
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performed in closed form. The complex analytic form is simplified by the use of the
delta-layer approximation to obtain tractable expressions for the mutuai coherence
function and the GPSD. Wittwer has evaluated the accuracy of the delta-layer
approximation as it affects the delay distribution of the received signal and has found
that the maximum error is small for transionospheric satellite communication link
geometries as long as the parameters of the GPSD are properly selected. Wirtwer
[1979] has derived expressions for the signal parameters of the GPSD that include the
effects of a thick scattering layer.

Now a relationship between the electron density fluctuations and the phase
variations imposed on the wave may be calculated. The differential phase change of
the wave along the propagation path 2 1

d
£ = re A Ane(p,z.t) . (49)

Under the assumption of small-angle scattering used to derive the differential equation
for '}, d/d 2 is approximately equal to d/dz, and the total phase change of the wave is

0 = reh [Ane(p,zt)dz = reMne) [E(p.z) dz (50)

integrated through the ionization layer. The autocorrelation function of the phase
change is

(O(p,O(P' 1)) [reMne)]* [dz [dz' (E(p.z.0E(p',Z'1))

[reA(nc)]? [ Aglp-p't-t) dz 'S1)

[reMne)]? Ls Ag(p-p.t-t)

where Lg is the delta layer thickness. The Markov approximation (Eqn. 29) has been

used in evaluating the autocorrelation of &. However, it is shown .n Appendix A that
Equation 51 is valid as long as the scattering layer thickness is large compared to the
paralle! decorrelation distance of the electron density fluctuations. The phase variance
imy arted on the wave is

O’é = [rcl,(nc)]z LS AO . (52)

The quantity A, depends on the power spectrum of the electron density fluctuations in
the ionosphere. The value of A, for a three-dimensional K in situ power spectrum
and for the delta-layer approximation is given in Appendix B.
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In general, only part of the total phase variance results in the Rayleigh amplitude
fluctuations that are described by the GPSD. Wittwer [1979, 1980] calls this part the
Rayleigh phase variance. The rest of the total phase variance is associated with the
mean dispersive effects described by the exponential term of Equation 17. It is the
smaller-sized electron density fluctuations that result in diffractive effects and the
larger-sized fluctuations that result in dispersive effects. Wittwer [1982] describes how
the Rayleigh phase variance may be separated from the total phase variance. In the
developments that follow, the phase variance in Equation 52 will be assumed to be the
Rayleigh phase variance associated with diffractive effects and amplitude fluctuations.

2.4 FORMAL SOLUTION OF THE TRANSPORT EQUATION.

Before proceeding with the solution of the transport equation, it is convenient to
expand the source term S by making two non-restrictive assumptions, First, it will be
assumed that the RF frequencies of interest are large compared to the plasma
frequency. Second, it will be assumed that k4 is much smaller than ks. The solution
obtained will then be valid for a small range of frequencies around kg and for
frequencies large compared to typical peak ionospheric plasma frequencies of a few
hundred MHz. With these assumptions, the source term becomes

(0}’ ki)

S = 4c 4kg [Aé(p 1) - Agl - k4 AO (53)

where it is understood that p is a two-dimensional relative position vector in the {-n
plane normal to the line-of-sight, and t is time difference.

The last term in the equation for S is a function of frequency and z but is
independent of { and n. This suggests that another useful factorization is I'; = I',[3
where I is independent of { and 1. After making this substitution in the transport
equation for I'; and separating variables, the result is

2
1 3T, ikg Val, (wd) 19T kiwp)
T or ol Ty A [Az,(p 0- Ao+ 30 ai Ao = 0. ()

The Iast two terms of this equation depend only on the spatial variable z. Therefore
the sum of these two terms must be separately equal to zero for arbitrary values of the
other spatial variables { and 7.

The source term in the I'; equation is only non-zero within the delta layer. Thus
from the transmitter to the delta layer, I'; is unity. With this boundary condition, the
solution of the I'; equation is

kw3 A
r} - exp _ _S‘L__QZ__Q (55)

(z-zy) L Z> 2 .

This term gives the effect of different transit times of different frequencies that results
from the frequency dependence of the index of refraction.
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Now the equation for I’ may be solved using the delta-layer approximation.
The equation for I is

2 2,2
100, kg Vgl (0p) ,
rz az - 2k§ rz - 4C4k§ lr\;(p,l) 'A()] = () . (56)
Within the delta layer, the kg term is small compared to the source term and may be
ignored. This is equivalent to assuming that diffractive effects are not important
within the delta layer [Lee and Jokipii 1975b]. Integrating Equation 56 through the
delta layer gives the value of I'; at the point where the wave emerges from the delta
layer:

[ () )
= 2 <(Dp’>-, = - >
rz exp ’L 4C4k: [Aﬁ(p[) ,A()] ; . (57)

The solution from this point proceeds as follows. Between the delta layer and
the receiver, the signal propagates in free space so the equation for I, is

of}  2ikg o
oz ~41(5_}(?1 Vd 1Hl =0 . (58)

2 . . . . . . -
The V4I'y term in this equation gives the effects of diffraction on the signal as it
propagates from the delta layer to the receiver. The boundary condition is I'y = '2I'3
at the point where the wave emerges from the delta layer. This equation is easily

solved by taking the Fourier transform from spatial coordinates { and n to angular
coordinates. First, it is convenient to transform variables to

e

= Yy =
u Zand

n
7 - (59)
The angular variables Ky and Ky are then independent of z. After the change in
variables, the equation for I'; becomes

or ikg [ 9* 51
571 - 'zdz.{ 2t (:Jrl =0. (60)

z  2kz® du  Ive,
Fourier transform pairs from spatial coordinates p in the plane normal to the
line-of-sight to angular coordinates K |, from carrier frequency differences o to delay

T, and from time differences t to Doppler frequencies wp are defined in this report to
be
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T(KL) = [exp-iK . -p) T(p) d*p (61a)

A T . dw

F( = Jexplion) o) 3 (61b)

M(op) = | exp(iopt) T(1) dt (61¢)
and

r(p) = jo K, .p) (K K, 62

p) = _ooeXp(l Lp) 1) (1)’ (62a)
- A
MNw) = jexp(-iwr) (1) dt (62b)
, A dop

i) = Jexp(-lwot) ['(wp) o (62¢)

Upon transforming from u and v to Ky and Ky, the equation for IA“l is

Qf.k _ikd 2 2\ [

3 " 2L (Ki+ KT, =0. (63)
This equation is integrated from z = z; + L§ to z = z; + z which gives

A A ikdY, 2 2

[ (Ku Ky zebzr0) = T1(Ky, Kv,zi+L5,0,1) exp -21(2(1<u + K3) (64)

S
where
Ltz
dz zr - Lg
= S = . 6
v 22 T (z+z)(z+Ll) (65)
Z(+L5

The expression for Yy may be simplified by setting L to zero, which is consistent with
the delta-layer approximation. Thus yis given by
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T (66)

V= @+ 20

At this point, a formal solution for the Fourier transform of the two-position,
two-frequency, two-time mutual coherence function at the receiver has been computed
in terms of the structure function Ag(p,t) - Ag. In the next two sections, models for

the temporal variation of the structure function and the quadratic approximation for
the spatial variation of this function will be discussed.

2.5 TEMPORAL VARIATION MODELS FOR Ane.

Under the frozen-in model, the temporal variation of the electron density
fluctuations is given by

Ang(p,z,t) = Ane(p-vt,z,0) . (67)

This equation is valid if the eiectron density fluctuations with a scale size Ly do not
appreciably change their shape within the time required for the structures to drift a
distance Ly. This 1s called Taylor's fiozen-in hypothesis, and this model has been used
in most previous calculations of the mutual coherence function for RF propagation
through the ionosphere. Using this model, the structure function A becomes

Ag(p.t) = Ag(p-vi,0) . (68)

This model is accurate for ionospheric conditions where the ionization has broken up
into a single layer of striations aligned with the earth's magnetic field lines.

The frozen-in model may not be valid before striations have formed or when
there are multiple scattering layers in the line-of-sight. Under these conditions, a
“turbulent model” that decorrelates spatial and temporal variations may be more
appropriate.

Dr. Leon A. Wittwer of the Defense Nuclear Agency has recently proposed a
more “General Model” for the teronoral and spatial behavior of the structure function
(Wittwer 1988]. In this model it is assumed that the stru.ure function depends on time
and space as p - Cvt, where C is the space-time correlation coefficient of the electron
density fluctuations. This model then varies smoothly between the frozen-in model
where C is unity and the turbulent model where C is zero.

2.6 QUADRATIC PHASE STRUCTURE APPROXIMATION.

As a practical matter, the quadratic phase structure approximation is required to
make the exponent in Equation 57 quadratic in the spatial and temporal variables. This
gives the resulting mutual coherence function a tractable mathematical form.
However, for the small angle, strong-scattering conditions considered in this report,
the correlation distance of the signal will be much smaller than the correlation distance
of the electron density fluctuations. The mutual coherence function will then be
determined primarily by the values of Ag(p,t) - Ay at small values for the space and
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time differences, and a Taylor series expansion of Ag(p,t) - Ag, keeping only the
quadratic terms, will provide a reasonably accurate mutual coherence function.

First consider only the spatial dependence of the structure function, Ag(p). The
temporal behavior will be included later. The Taylor series expansion will make the
following calculations independent of the functional form of Ag(p) as long as the

~2Cond denvative of Ag(p) exists for p equai 10 zero. A detailed discussicn of Ar(p)
will therefore be deterred to Appendix B. However, some generic properties of Ag(p)

need to be considered here in order to specify the functional form of the quadratic
terms in the Taylor series expansion.

The propagation coordmate systems are shown in Figure 2. The Z axis is along
the line-of-sight and the T axis 1s allgned with the geomagnetic field lines B at the
elevation of the delta layer. The Tand S axes are in a plane normal to the magnetic
field. The penetranon angle @ is the angle between the Z axis and the 1 axis. At the
receiver, the X axis dxrectxon 1s given by the cross product of B and the line-of-sight
unit vector, z and the y direction is orthogonal to both X and Z.

Now consider the functional form the power spectrum Sg¢(K) of the electron

density fluctuations in the r-s-t coordinate system. The power spectrum is usually
assumed to be a function of the quantity

LK? + LiK§ + LiK}

Line of Sight t
zZ

Penetration/

Angle
D

S
Geomagnetic Field
B

_txZ
sin ¢

Figure 2. Propagation coordinate systems.
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where L;, Ly, and L, are the scale sizes of the fluctuations in the three directions. The
usual assumption that the electron density fluctuations are elongated in the t direction
and are symmetric about the t direction will be made. The scale sizes are then

Lr = Lg = L, (69)
Ly = q La
where q (q > 1) is the axial ratio.

The power spectrum Sg(K) will now be evaluated in the x-y-z coordinate system
in order to calculate Ag(p) in this system. The power spectrum in x-y-z coordinates is
a function of the quantity [Wittwer 1979}

LiKx + LKy + LiK7 + 2LyKyK,

where
Lx = L
Ly = Lo Vcos’® + qsin’® (70)
L, =L, \/sinZ(D + qzcos‘Z(D

Ly, = Lo (q*-1) sin® cos®

The structure function Ag(p) is the two-dimension Fourier transform of the
power spectrum Sz(K):

©o 2

. . dK;
:(p) = Jexp (iKLp)Se(K L ,K,=0)

A 2n? (71)

-0

Setting K, = 0 in this equation results in S:{K) being a function of
212 22
LiKx + LyK§

and the structure function being calculated in the plane of the delta layer (i.e. at z = 0).
After the Fourier transform is performed, Az(p) will be a function of the quantity

The quadratic phase structure approximation then takes the form

/1(2 \,’2 !
Az(p) = A, D - AL v+ T , (72)
I \’(‘ ) N L; L; )
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The coefficient A, is calculated in Appendix B for a K* electron density fluctuation
spectrum. The coefficient Ay is given in terms of the phase variance by Equation 52.

Under the general model, the temporal variation of the structure function is due
to a translation of the spatial coordinates. Equation 72 then becomes

r ;o2 2 \
i _ x>y v JCaxt JCyyt)
AL(p.D) = Ao{l - A, LLi FL AL, Lo, J . (73)

The quantity T, can be thought of as a “decorrelation time” of the electron density
fluctuations in the ionosphere. The degree of space-time correlation is determined by
the coefficients Cx; and Cy .

2.7 MUTUAL COHERENCE FUNCTION.

The boundary condition for the mutual coherence function I'y at the delta layer
1 given by the product I',I'5. Using Equation 52 to relate A, to the phase variance and
then setting the delta layer thickness L§ to zero gives the following for I'; and I'; at the
point where the wave emerges from the delta layer:

2 2 2
2 x>y ot Cxxt Cypyt
= - - - 4
r, exp[ G¢,A2 [L)z( + L§ + T% 2 LyT, 2 LyT, (74)
and
1 (Co®
Iy = exp[- 5 (&ﬂ (75)

where wg = ckg 1 the radian frequency of the carrier.

Upon changing variables in the equation for I'; to the dimensionless spatial
coordinates u and v, performing the Fourier transform to Ky and Ky coordinates, and

A
assuming that the delta layer thickness is zero, the boundary condition for I'; is

2 2 2102 212
A L 2 Op®W" L5Ky + L{KY
'K = S -0iA, 3 - - 7 7
1(Ku,Kv,2z,0,0) A eXP|- OpArpa- 52 402A 2 (76)
2
t“° . CxiLxKy+ CyiLyKy t
X exp [ oéAz(szt + C;‘)TTZ) _j TX=xDu . ytbyhy T+ }

The solution at the plane of the receiver is given by Equation 64 and this boundary
condition.




. . . - A
After performing the inverse Fourier transform on the solution I';(Ky,Ky,z;,0,t)
and converting to unnormalized distance units x and y, the two-position, two-
frequency, two-time mutual coherence function is

1 (Co®
exp [ 5 ((ﬁjﬂ exp [ (1 - Cg - Cp) (%gﬂ

rl(x,y,w,t\} = 1 1
.mAxJi[ .wl\yjli
[1 T Wcoh b Ocoh
X t\? y ty
[Q i C’“rj (ﬁy' Cyt 1())
X exp 1+,c0A exp| - 1+.%_ (77)
: Wcoh : Wcoh
where
204 75 208 15
Ay = | SIx R L) 2
Ll wj e nd | 7

The decorrelation distances 2x and 2y are given by the expressions:

(zy + zp)L Zy + z¢)L
Ry = Dbx g, < rzoly (79)

Z10o\ A, Y 106N Ay ’
the decorrelation time is given by the expression
Ty
To = , (80)
GoVA;

and the coherence bandwidth W¢oh is given by the expression

Ay(l)%)LE Zt + Zr
20044, ZtZr

Wcoh = (81)

Under the delta-layer approximation, the ratio of the two decorrelation distances
is a function of only the penetraticn angle and the axial ratio and is given by

] L
ﬁ = d = \/c052<b+q25in2<b . (82)

The orientation of the x and y axes is usually chosen so that 24 is the smaller of the two
decorrelation distances. The minimum decorrelation distance is also referred to as 2,

in the literature. This notation will occasionally be used in this report. Equation 82 is
used to calculate 2y when only the minimum decorrelation distance is specified.
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It will be seen in the next section that the coherence bandwidth is proportional to
2rnf, where f; is the frequency selective bandwidth of the signal. It is clear from the
form of the mutual coherence function in Equation 77 that the coherence bandwidth
could have also been defined by either of the products ®WcohAy or WcohAx. The
asymmeury factors Ax and Ay have been included in the definition of the coherence
bandwidth in order to simplify the relationship between wcop and f;.

The equations for the decorrelation time, decorrelation distance, and the
coherence bandwidth are only valid under the delta-layer approximation and do not
reflect how these parameters are actually calculated for a given ionospheric
disturbance. Wittwer [1979] has derived expressions for the decorrelation distance and
the coherence bandwidth that are valid for more general scattering layer geometries.
It is these more general expressions that are used in signal specifications to calculate
these signal parameters.

For satellite communications links, the distance from the ionosphere to the
satellite is typically much larger than the distance from the ionosphere to the ground.
If the transmitter is on the satellite then z; >> z; and if the transmitter is on the ground
then zy << zy . Because the expressions for the decorrelation distances are not
reciprocal in z; and zr, the values of 4x and 4y depend on the direction of propagation.
However, the expression for the coherence bandwidth is reciprocal in z; and z; 0 ®¢oh
and the frequency selective bandwidth are independent of the propagation direction. It
is interesting to note that the expression for the decorrelation time is independent of the
propagation distance, depending only on the “decorrelation time” of the striations and
the standard deviation of the phase fluctuations.

The decorrelation distance of the signal as it emerges from the delta layer is
approximately equal to Ly/0¢. Under strong-scattering conditions where ¢¢ >> 1, this
distance will be much smaller than the electron density fluctuation scale size and the
quadratic phase structure approximation conditions are met. Conversely, under weak
scattering conditions where o©¢ = 1, the quadratic phase approximation will give
inaccurate results for the mutual coherence function.

Now consider the mutual coherence function for two positions, one frequency
and two times:

_ 2 2, (L X Y (¥ Y
L0 = exp|- (1 - CA - CZ) (TOT : (lx - Cxt To) : (Qy el TO”

(83)

The quantities 2x,%y, and Tj are seen to be the 1/e points of I';(x,0,0,0),
'(0,y,0,0), and I",(0,0,0,t) respectively and are therefore consistent with the usual
definitions of decorrelation distance and time.




2.8 GENERALIZED POWER SPECTRAL DENSITY.

The generalized power spectral density S(K,7,wp) of the signal incident on the
plane of the receiver is the Fourier transform of the mutual coherence function:

oo md o0 .
S(Ky,top) = [d% | 5% [dt Ty(p.w,t) exp [-i(K (-p-0T-0pt)] (84)

where angle-of-arrival K| is the Fourier transform pair of position p in the x-y plane,
delay 7t is the Fourier transform pair of relative carrier frequency ®, and Doppler
frequency wp is the Fourier transform pair of relative time t. The quantity
S(K1.1,0p)(d°K 1/4n?)d1(dwp/2n) is equal to the mean signal power arriving with
angles-of-arrival in the interval KL/477:2 to (K [ +d*K | )/4r?, with delays relative to a
nominal propagation time in the interval T to T+dTt, and with Doppler frequencies in the
interval wp/2n to (op+ dwp)/2x. The delay dependence of the GPSD is a
consequence of the fact that some of the signal energy takes a dog-leg path through the

ionosphere from the transmitter to the receiver and arrives later than the signal energy
that propagates straight through the ionosphere.

In general, the GPSD can be written as the product of a Doppler spectrum
Sp(wp) and an angle-delay spectrum Sk(K1,T1):

S(Ki,t,0p) = Sp(wp) Sk1(KL,1T) . (85)

After performing the integrals indicated in Equation 84, the Doppler spectrum for the
general model is

Vrt, (1owp - CxiKx x - CyKy2y)*
€Xp| - 2 2 :
V1 - Ch - Cy 40- G- G :

(General Model)

Sp(wp) = (86)

The angle-delay part of the GPSD for the general model is identical to that
derived previously for the frozen-in and turbulent models [see, for example, Duna
1986]. In terms of the components of K (Kx and Ky) the angle-delay part of the
GPSD is

! 2,2 242
|3 Kty Ky
SKt(Kx.Ky,1) = [ﬂ 2 942y 0tOdcoh EXP { X°x LYZY }

4 4
2 Av(K2+K2)927?
o Ay(Rix+Ky) 2%
X exp {Oé [o)coht - x4 x} (87)

where the delay parameter a is defined to be
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= i (88)
GoWyoh

The components of K are related to the scattering angles 6x and 6y about the x and y
axis respectively by the relations

27 sin(By)

Kx = }. (893)
21 sin(By
Ky = “1; ) (89b)

[t should be noted that the range of delay in Equation 87 is from -co to +oo.
However, this delay is relative to some nominal propagation time, and the value of the
GPSD rapidly approaches zero for decreasing negative values of ®W¢onT. Thus negative
values of delay present no real problem with causality.

It is interesting to examine the limits of the general model Doppler spectrum in
order to show that this model does indeed encompass both the frozen-in and fully
turbulent models. These limits for the Doppler spectra are:

Limit
Cxt -1 Sp(wp)
Cyi =0

27 T 8(TowD - Kx2x)  (Frozen-in Model) (90)

and
Limit
Cxt =0 Sp(wp)
Cy[ -90

w2wb
Vrtyexp| =51 . (Turbulent Model) 1)

For the frozen-in model, the delta-function relationship between Doppler frequency
and Ky is what is obtained by assuming that the random diffraction pattern of the signal
is “frozen” and drifts in the x-direction past the receiver. For the turbulent model, the
Doppler spectrum is independent of Ky so the temporal and spatial variations in the
received signal are also independent. This Gaussian form is the true turbulent Doppler
spectrum, as opposed to previous turbulent models that assumed an wp Doppler
spectrum for mathematical convenience [Dana 1986].

The significance of the parameters @, 2x, Ly, and Wcoh that appear in the angle-
delay part of the GPSD will be discussed in the next subsections.

2.8.1 Delay Spread and .

The distribution of delayed signal power with a fixed angle-of-arrival, which is
given by the second exponential term in Equation 87, has the Gaussian form
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S¢(1) = 72—? exp |- 3

(92)

where tp is the additional propagation time for signals arriving at the angles Ky and
Ky. To see this, the expression for tp is expanded using the definitions for L, &y, and
Wcoh and the assumption of small-angle scattering to give

o ]
0% + eJ zr(Zy + Zp)

The geometry of the scattering in one plane is shown in Figure 3. Clearly, for small-
angle scattering, the angle 6; at the transmitter is related to the receiver scattering angle
Or by the relationship

Zr

0, =
L Z

6r . (94)

The difference d between the line-of-sight distance and the scattered path length is
given by

0 z:(z +z

d =« zr2 + zie, + \[z% + 2216[ (zr+ 7)) = Er —r(W[zTL) (95)
for scattering in one plane only. When scattering about both the x and y axes is taken
into account, the total path difference is given by Equation 95 with 62 replaced by

9,2c+6§. The additional time required for the signal to propagate along the scattered
path is just d/c which is equal to tp.

Transmitter

pappr:. Scattering
SUE - Layer

L\ :
~~~~~~~~
 AONIRLLOET AANED] (A

Receiver

Figure 3. Scattering geometry.
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For a given value of the coherence bandwidth, larger values of a result in a
narrower delay distribution of signal power about the time tp. The delay parameter
is then a measure of the relative importance of diffraction and dispersion with large
values of o indicating strong-scattering effects and small values indicating weak
scattering or dispersive effects. The strong-scattering limit then requires that the value
of a be large.

2.8.2 Frequency Selective Bandwidth and m¢oh.

The frequency selective bandwidth f; is an important measure of the effects of
scintillation on the propagation of wide bandwidth signals. This quantity is defined as
the standard deviation of the time-of-arrival jitter G1:

1 .
fo = 271'01 (96)
where
or = (1% - (1) . (97)

These delay moments can be calculated directly from the angle-delay part of the GPSD
using the equation

oodZK_j_ oo
Po () = | 20 [t Ske(KL,1) . (98)

o0

It is easy to show that the mean signal power P is equal to unity. The first and second
moments are easily obtainable in closed form giving the relctionship between
coherence bandwidth and the frequency selective bandwidth:

1
‘l -
Ocoh = 2nfo(1 + ;]2 . (99)

L

This expression is valid under the quadratic phase structure approximation for which
the GPSD is valid. Yeh and Liu [1977] have calculated an expression for the time
delay jitter keeping both the second and forth order terms in the expansion of the
structure function Ag(p). Their result has more terms in the expression for the time
delay jitter. However, the additional terms are significant only when the quadratic
approximation for the structure function is invalid and therefore only when the GPSD
derived above is also invalid.

The 1+1/0 term in the expression for the coherence bandwidth represents the
relative contributions to the time delay jitter from diffraction (1) and dispersion

(1/a®). In the limit that o is large, the time delay jitter is determined by diffractive
effects alone whichi should be the case under strong-scattering conditions.
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2.8.3  Angie-of-Arrival Fluctuations and &y and .

A key parameter in determining the severity of antenna filtering effects is the
standard deviation of the angle-of-arrival fluciuaiions og of the electric field incident
on an antenna. [t is clear that for anisotropic scattering, when 24 and 2y are unequal,
the values of og for so ttering about the x and y axes will differ. The variance of the
angle-of-arrival fluctuations about the x-direction is equal to

, TAKL T TAKy ?
Tgy = f on, J' rb’,‘{_@ Sku(KL,m) (100)

under the small-angle scattering approximation that is required for the GPSD to be
valid. A similar expression holds for the angle-of-arrival variance about the y-
direction. The standard deviations of the angle-of-arrival fluctuations about the x and
v axes are then given by

A
Oy = ;ZZKQX (101a)
A
e = = . 101b
O = 2ry, ( )

For s:nall-angle scattering to be a valid assumption, the larger of the two angular
standard deviations must be small relative to one radian. Thus the minimum
decorrelation distance must be approximately equal to or greater than the RF
wavelength A. The small angle approximation has been used throughout the derivation
of the GPSD, starting with the parabolic wave equation. The resulting expression for
the GPSD, however, does not exhibit singular behavior when the angle-of-arrival
fluctuations become large and thus the small angle approximation is quite robust.

2.8.4 Isotropic Examples.

When the penetration angle is zero the two decorrelation distances are equal (2
= 2y = 1) and the scattering is isotropic about the line-of-sight. The one-dimensional
angle-delay generalized power spectral density is then given by

o0

K

SKuK. D) = [ Sk-(K«=K Ky, 1) 57 (102)
oo ]

o . r e2g2 -

T 0o | Tt ] a KL )

= ‘\‘*2)1‘ M¢ph Ly €XP LZ(XZ - (UcohTJ L\«?(l + G4 WeohT )

where Wittwer's F function 1s defined as
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Fiz) = exp(-z5) [exp (-*-20%2)dt . (103

-00

Witrwer [1980] has developed a polynomial expansion for this integral that is accurate
to within one percent. This function may also be written in terms of Ky and [}/4
Bessel functions.

A three-dimensional plot of the isotropic one-dimension angle-delay GPSD 15
shown in Figure 4. This plot shows the mean received power as a function of
normalized angle K%, and normalized delay ®wcontT. The vertical axis is linear with

arbitrary units. The value of a is 4 for this figure so consequently the quantity (coh 18
essentially equal to 2rfy.

It can be seen that the power arriving at large angles is also the power arriving
at long delays. The power arriving at long delays thus has higher spaual frequency
components than power arriving at short delays. When there is strong space-time

correlation (i.e. when C,zu + Ci( is approximately equal to unity) these higher spatial
requency components correspond to higher Doppler frequency components. The

ignal arriving at long delays then varies more rapidly in time than the signal armving
t short delays.

N
&
2

3

‘o4 » 2 *

Figure 4. Angle-delay generalized power spectral density.
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Another view of the GPSD can be obtained by considering the delay-Doppler
scattering function

dK dK
Swp(t,0p) = 2_nx J_x S(Kx,Ky,T,0p) . (104a)

For both the frozen-in and turbulent models the scattering function is readily evaluated
for isotropic scattering with the results:

L

a3z 1 o (DD‘EO |
Stp(t,.0p) = NG WcohTo €XP| 53 - WcohT \/‘ \/— - WcohT J
(Frozen-in Model) (104b)
2
W Df(z):l Mcoh 1 1 AWcohT
Stp(t,0p) = \[_TTC Tp €XPp {- 4 ) exp [2(12 - (‘)COhT] erfc l:\[i(l - \/E }
(Turbulent Model) (104¢)

where erfc (-) is the complementary error function. It is clear from the form of
Equation 104c that the turbulent model scattering function is separable into a function
of Doppler frequency times a function of delay. This is not the case for the frozen-in
model.

For the general model the scattering function can be written in the form

1
o 3 1
Stp(t,wp) = {\/i(l i Czl)} 2(DcohTo exXp [2(12 - wcohf} (104d)
X

(1o®D - CxiKy o) [K K} 25 \} dKy
X 29 Jexp{ 4(1 - Cit) } L{‘a \/— c‘)coh‘f)

(General Model)

assuming that Cy is zero. The remaining integral in Equation 104d is easily evaluated
numerically.

A comparison of the scattering functions for the frozen-in and turbulent models
is shown in Figure 5. The frozen-in scattering function is just a reproduction of
Figure 4 with normalized angle K2, replaced with normalized Doppler frequency
Towp. This is a consequence of the delta-function relationship between angle and
Doppler frequency for the frozen-in model. For this model the signal at long delays
has correspondingly large Doppler shifts, and a wing-like structure is seen in the
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scattering function. The turbulent model scattering function does not exhibit these
Doppler wings because the Doppler spectrum is the same at all delays.

Both functions have exactly the same power density at each delay. The
difterence 1n appearance of the figures is due to the fact that the turbulent model signal
at long delay is more spread out in Doppler frequency and is therefore less obvious.

A progression of scattering functions for the general model is shown in Figure
6. The space-time correlation coefficient Cy; varies from 0.99 for the scattering
function in the upper left to 0.7 for the scattering function in the lower right. The
scattering function for Cy; equal to 0.99 is essentially identical to that for the frozen-in
model, and the scattering function for Cy¢ equal to 0.7 is essentially identical to that for
the turbulent model. For intermediate values of Cy;, the scattering functions still
exhibit Doppler wings but the wings have broader Doppler spectra as Cx; decreases.

2.8.5 Diffraction Limited Form of the GPSD.

Under the strong-scattering conditions in the ionosphere that cause signal
scintillation at radio frequencies, diffractive effects dominate dispersive effects. In this
case the value of o in the GPSD is large. In the limit that o approaches infinity, the
angle-delay part of the GPSD becomes

K30 K32
SK1(Kx,Ky,1) = nlxly Ocoh exp [- ):‘ X —14——1 J

Ay(K% + K221
x S[wcoht- 31 x4 ) J (105)

The range of delay in this equation is from O to +e= due to the fact that the second term
in the delta function is positive.

This geometric optics limit results in a delta-function relationship between angle
and delay. The delta function in this equation can be used to associate the signal with a
particular angle-of-arrival to a specific delay. This association is used to develop
efficient channel simulation techniques.

2.8.6 Orthogonalized Form of the GPSD Used in Channel Modelling.

Once the diffraction limit of the GPSD has been taken, the delta-function
relationship in Equation 104 can be used to relate angles-of-arrival to delay. The
GPSD used in channel modelling can then be integrated over delay producing an
angular-Doppler form, denoted Skp. After some rearrangement of terms this form of
the GPSD is
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SKD(Kx.Ky,0p) = [S(Kx.Ky,T,0p) dt (106)
0

i

320,847, T50d
3 3 exp| - 4
Vo a

o (Kx&x - CxiTo0D)* (1 - CF) + (Ky Ly - Cyitoop)? (1 - CR)
P 4(1- G} - C)

X

ex { 2CxiCy (Kxix - CxiTo0D) (Kyly - Cy1To0D)
P 4(1 - CL - CI) '

[

This form of the GPSD shows that, aside from the leading exponential factor, the effect
of Doppler frequency is to shift the GPSD in Kx-Ky space. Thus it is possible to
evaluate Equation 106 for zero Doppler frequency and then to shift the zero point of
Kx-Ky coordinate system to obtain the GPSD for non-zero Doppler frequencies.

Equation 106 does present a problem due to its Kx-Ky cross term. This term
makes the evaluation of the signal power in each Kx-Ky grid cell computationally
difficult and therefore time consuming. Of course a simple rotation can be used to
eliminate this term. Thus consider a new coordinate system, Kp-Kq, where

Kp = Kx cos® + Ky sind (107)
Kq = -Kxsin® + Ky cos? .

The rotation angle ¥ between the Kx-Ky and Kp-Kq coordinate system is chosen to
eliminate the Kp-Kq cross term. This choice results in the following expression for the
tangent of the rotation angle:

2Cx[Cy[9.x Qy
251 -CR) - 3501 -Cly

tan (29) = (108)

After a little algebra it can be shown that the angular-Doppler GPSD in the
Kp-Kq coordinate system is

2 -
To®
SkD(Kp,Kq,wp) = V1, exp{- -0—4—6 (109)
y Vrip o [ (Kpnp-cplrgmp)z“ Vrlg xp[_ (quq-cq[l’g(x)[))z
V1 - Ch 41 -Cpo 41 C;[e 4(1 - CQ)

when the following definitions are used:
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1 cos?d sin’d

1 sind  cos%d
= = T3+ (110b)
23 Ly 2y
C cos8 C sind C
2 = P ST v (111a)
p X y
sin® C cosV C
%n s (111b)
q X y

Two key features of the channel modelling technique developed for the general
model are the evaluation of the signal power in this rotated coordinate system using
simple error functions, and the use of the Doppler shifting property of the GPSD.

2.9 IMPULSE RESPONSE FUNCTION AND ANTENNA EFFECTS.

The channel impulse response function of the signal incident on the plane of the
receiver and the impulse response function of the signal at the output of an aperture
antenna will be discussed in this subsection.

2.9.1 Channel Impulse Response function.

Consider a solution U(p,m,t) to the parabolic wave equation in the plane of the
receiver. The dependence of U on propagation distance z has been suppressed because
subsequently we will always consider U in the plane of the receiving aperture. The
parabolic wave equation solution represents the random effects due to the fluctuating
ionosphere on the incident electric field at position p and time t from a transmitted
monochromatic wave with angular frequency ®. The channel impulse response
function of the signal in the receiver plane is [Knepp and Wittwer 1984]

o0

h(p,7,t) = J’U(p,u)+w0,t) exp [i(BT(®)) + iw1] di% (112)

-0

where (8T(w)) is the dispersive contribution to the impulse response function resulting
from the total electron content (TEC). The impulse response function h(p,t,t) is
defined to be the received signal at time t + T and position p from a transmitted
impulse at time t minus the nominal propagation time (the nominal propagation time is
usually set equal to zero).

The term exp {i(BT(w))] in Equation 112 is the transfer function of a smooth
ionized plasma and is equal to the exponential term in Equation 17. Thus the smooth
plasma transfer function is
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'Zl

Because the smooth plasma or dispersive effects represented by exp[i{(6T(®))] and the
fluctuating plasma effects represented by U(p,z,,w,t) appear as the product, it is
possible to separately consider these two effects. The dispersive effects will be
considered in the next subsection.

If the transmitted signal is a modulated waveform m(t), then the signal complex
voltage incident on the plane of the receiver is the convolution of the transmitted
modulation and the channel impulse response function:

o0

u(p.t) = [ m(t-1) h(p,T,t-1) dt . (114)

-00

It is clear from the form of this equation that received signal at time t and delay t
corresponds to transmitted modulation at time t - T. The third argument of h in the
equation is t - T because modulation transmitted at earlier times transits the channel at
earlier umes. [t is generally assumed that the channel varies slowly in time relative to
the delay spread of the signal, and h(p,t,t-7) is set equal to h(p,t,t) in Equation 114.
This 1s strictly true only if the product fyTq is large. However, the product fyty will
generally be large under conditions where RF signals can propagate through the
ionosphere.

If the delay spread of the impulse response function is larger than the modulation
period of my(t), then the convolution in Equation 114 will encompass multiple
modulation periods. As a result the received signal will contain information from
multiple modulation periods. In communications systems this phenomenon is referred
to as intersymbol interference.

2.9.2 Dispersive Effects.

When the dispersive term (6T(w)) is expanded in a Taylor series about the
carrier radian frequency the result is

, (w-wo)2 o
O1()) = (B1(0)) - (-00) (BT(W0)) + 5 (BT(wQ)) + -~ (115)

where the first three coefficients in the expansion are
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(61(wg)) = é J - Tz (116b)
L (O
-y
Zr
U KOS 8 <w29<z>>}-35d e
= - - | - . C
O = ¢ | el e
-7y

These equations may be expanded using the assumption that the carrier frequency is
much larger than the plasma frequency with the results:

2nR

(O1(0g)) = - 75— + AeNT (117a)
. R AreNT
OT(00)) = T+ 3pe (117b)
" l3rcNT
(B1(wp)) = - i (117¢)
where the free space range R and total electron content NT are given by
R =z+z (1138)
and
Zr
NT = [(ne(2))dz . (119)
-Zl

The first terms in Equations 117a and 117b are simply the free space phase shift and
propagation time which are proportional to the line-of-sight distance R. The terms
proportional to Nt in Equations 117 represent the phase shift, group delay and
dispersion due to the mean ionization.
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The Doppler shift fp of the incident signal due to range and TEC dynamics is

1 d(OT(wy))  1dR  AredNy

fb=5r & = ad t oo dt -

(120)

Note that increasing TEC (positive dNT/dt) increases both the propagation time and the
Doppler shift whereas increasing R (positive dR/dt) increases the propagation time but
decreases the Doppler shift. ¢

2.9.3 Antenna Aperture Effects.

The voltage at the output of an aperture antenna is the spatial convolution of the
incident voltage and the aperture weighting function, A(p). The received voltage for
an antenna located at p, and pointing in the K, direction is given by

oo

Ua(Po.@.) = [ U(P,0.t) A(po-p) exp [iKg (po-p)] d%p (121)

where the subscript A denotes the voltage at the output of the antenna. The z
dependence of Ua has been suppressed because it is understood that this voltage is at
the plane of the receiver. It is assumed that the aperture weighting function is
independent of frequency. This is generally true for a range of frequencies about the
carrier frequency that is larger than the signal bandwidth.

In order to relate the GPSD of Ua to the GPSD of the incident signal, the two-
position, two-frequency, two-time mutual coherence function of Ua is required. The
mutual coherence function of the signal out of the antenna is

TAP.0,0 = (UA(P1,0;,1)UA(P2,02.1)) (122)

= % [ (U(p ot U*(p",02,1))

X A(p-ppPA*(p"-py) exp [iKp(py -p' -p2+p)] .

. . . . * .
For statistically stationary processes the expectation of UAUA must be a function only
of the differences p = p; - Py, ® = W, - 0y, and t = t, - t,, and the expectation of UU*
in the integrand must be a function only of the differences p' - p", , and t.

The aperture weighting function can be written in terms of the voltage beam
pattern g(K ) using the Fourier transform relationship

d2K_j_
@m)? -

A(p) = [g(KL) exp (iKLp) (123)

-00
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Upon substituting this equation for both aperture weighting functions in the expression
for the mutual coherence function, changing variables from p'tor =p'-p", and
changing the order of integration, Equation 122 becomes

oo

Ta(p0) = exp (iKgp) [ d*r [(r,0.0) exp (-iKqr) (124)

-00

© Ak . T diK" ) .
X_OJ; (2m)? 8K exp [IK"(p, - 1)] J (2m)? g*(K") exp (-iK"-py)

x [d¥p" exp [i(K" - K')-p"] .

The last integral in this expression is equal to (2m)? 8(K"-K'), and the K" integral may
be performed directly. Another change in the order of integration yields

. ¢ 4K |
Ta(p,0,t) = exp (iKgp) | 20 G(K") exp (iK'-p) (125)
X szr I'(r,ot exp [-[i((K"+ Kg)r] .
The quantity
G(K) = g(K)g*(K) (126)

1s the power beam pattern of the antenna.

The mutual coherence function ['(r,,t) of the signal incident on the plane of the
antenna that appears in the second integral of Equation 125 is the product of the free
space term I'y (Eqn. 43) and the stochastic term I",. The free space term may be pulled
out of the second integral if it is assumed not to vary over the face of the antenna. This
is equivalent to assuming that any deviations from a plane wave in the incident signal
are due to scattering effects in the ionosphere and are not due to geometrical effects.
After the free space term is pulled out of the integral, I'A may be assumed to represent
only the stochastic fluctuations of the received signal.

Now the GPSD of the signal out of the antenna can be computed by taking the
appropriate Fourier transforms (see Equation 84) from p, ®, and tto K|, 7, and wp
respectively. After performing the w to T and t to wp transforms and rearranging
terms, the GPSD at the antenna output is
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SA(K ,top) = | )

-0

G(K) [d* T(rop) exp [-(K+Kp)r]

x [ d% exp li(K-K_1+K¢)-pl . (127)

The last integral in this equation is just (2m)% 8(K'-K | +Kp). Using this delta function
to perform the K' integral results in:

(=]

SA(K,t,0op) = G(K-K)) szr f‘(r,t,wp) exp (-iK 1) (128)

-o0

where the remaining integral in this expression is just S(K ,7,0p). The GPSD of the
signal out of the antenna is then

SA(K,1,0p) = G(K -Ky) S(K[,T,0D) . 129)

As expected, the effect of an antenna is to modify the incident power as a
function of angle. This result will be used throughout the rest of this report.

The effect of antenna filtering is illustrated in Figure 7 which shows four plots
of the GPSD at the outputs of four uniformly-weighted circular antennas (with
diameter D) for isotropic scattering (¢ = &y = 2,). The antennas in this example are
all pointed along the line-of-sight. The plot in the upper left is the same as in Figure 4
and is for a point antenna (D << ), for which there is no antenna filtering. The
other three plots in the figure are for cases where the ratio of the antenna diameter to
the decorrelation distance is equal to 1, 2, and 4. As the antenna size increases for a
given value of 2, or, equivalently, as the decorrelation distance decreases for a given
antenna diameter, more of the incident signal with large angles-of-arrival is filtered
out of the received signal. The effect of this on the mean received power, frequency
selective bandwidth, and decorrelation time of the signal out of the antenna will be
discussed next.
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SECTION 3
ANTENNA FILTERING EFFECTS

An antenna beam pattern acts as an angular filter of the received signal power.
Because of this, the mean power, decorrelation time, and frequency selective
bandwidth of the signal at the output of an antenna are different than those of the
incident signal. The reduction in mean power is a direct consequence of the attenuation
of the signal arriving outside of the main beam of the antenna. If the antenna is
pointed along the line-of-sight, the signal that is attenuated by the antenna is that with
large angles-of-arrival and hence large times-of-arrival. Thus the effect of ai. antenna
pointed along the line-of-sight is to reduce the delay spread of the signal. When the
same antenna is pointed away from the line-of-sight, however, its effect on the delay
spread of the output signal can be quite different, as will be shown in this section.

Depending on the values of the correlation coefficients Cy, and Cyy, the antenna
may also filter the decorrelation time. In the fully turbulent case, the signal at all
angles-of-arrival has the same effective decorrelation time, and hence an antenna has
no effect on the decorrelation time of the output signal. However in the frozen-in case
the effective decorrelation time of the signal varies with angle-of-arrival, and an
antenna can strongly filter the decorrelation time. This filtering results in a signal that
is more slowly varying at the antenna output than it is on the face of the antenna.

The effects of aperture antennas with arbitrary beamwidths and pointing angles
will be considered in this section. The antenna beam patterns for uniformly-weighted
circular or rectangular apertures and for Gaussian apertures are described in Section
3.1. Then the filtering equations for mean power, spatial and temporal decorrelation
properties, and frequency selective bandwidth of the signal out of a Gaussian antenna
with arbitrary beamwidths and pointing angles are given in Section 3.2. Many of these
results have been derived previously by Frasier [1988] and are just reproduced here.

An example is given in Section 3.3. Here the antenna is assumed to be circular
with uniform weighting, and the scattering is assumed to be isotropic (£x = Ly = {¢).
The filtering equations for this case are plotted versus the ratio of the antenna diameter
to the decorrelation distance for a range of pointing angles. This example illustrates
most of the important effects of antenna filtering.

3.1 ANTENNA DESCRIPTIONS.

The coordinate systems for the propagation and the antenna are shown in Figure
8. The z axis is along the line-of-sight, and it is assumed that the face of the antenna is
in the x-y plane. Note that for a receiving antenna we have reversed the direction of
the z axis in the figure from pointing in the direction of propagation to pointing back
toward the transmitter. This is done because it is usual for antenna coordinate systems
to point out of rather than into an aperture. The beam of the antenna in the figure is
pointed away from the line-of-sight in the direction K defined by a pointing direction

. A . .
elevation angle ©, (measured from the z axis) and an azimuth angle ®, (measured
A . . . A .
from the u axis). The rotation angle W is the angle between the scattering x axis and
A .
the antenna u axis.
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Figure 8. Propagation and antenna coordinate systems.

The antenna (u v) coordinate system, where v is in the x- y plane and is
orthogonal to 3, is chosen for convenience m descnbmg the antenna beam pattern. For
example, if the antenna is rectangular, the Q- V) axes should be aligned with the sldes of
the aperture. [t is assumed that the antenna beam pattern is separable in (U-v)
coordinates. Thus the two-dimensional beam pattern G(8,,0y) is approximated by the
product G(8,)G(6y) where 6, and Oy are angles about the u and v axes respectively. In
many cases the 0 axis will be paralle] to the local earth tangent plane.

In generai the face of the antenna will not lie in the x-y plane. However for
satellite communications links it is usual for the satellite position to be known
accurately through ephemeris data and for an antenna to be dedicated to a single link.
Thus it is likely that the angle between the antenna boresight direction and the line-of-
sight will be small, and the cosine squared effects of this angle may be ignored. If
these angles are not small, then in the developments that follow the antenna size is the
projection onto the x-y plane and the antenna beamwidths must include the effects of
beam broadening as the beam is pointed away from boresight.
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3.1.1 Gaussian Beam Profiles.

The antenna beam pattern 1s assumed to be separable in the u-v coordinate
system. The Gaussian antenna beam pattern is then

G(KyKv) = exp [- af(Ku-Kou)? - af(Ky-Kov)’] (130)

where Ky and Ky are components of the pointing vector. The peak gain G(0,0) in
this equation has been set to unity because this value is usually included in the
calculation of the mean received power. The components of the pointing vector in the
u-v plane, Ky, and Ky, are:

2n

Ko = TsmG)O cos D, (131a)
2T . .

K()v = ~;‘T Sln@() sSin (DO . (131b)

For either the u or the v direction, the antenna beam pattern for pointing along
the line-of-sight can also be written as

S

20
G(8) = exp{- In2 (gﬂ (132)
o) |
where 0 is the 3-dB beamwidth (i.e., full width at half maximum). Equating the two
patterns gives

o = m2 %
u = 2452
B4

(133)
where 8y is the 3-dB beamwidth in the u-direction. A similar expression holds for o
which relates this parameter to the 3-dB beamwidth in the v-direction, 6y.
3.1.2 Uniformly Weighted Circular Apertures.

For a uniformly-weighted circular aperture, the aperture weighting function is

1. D
2 1f|p|§_2

A(p) = (134)

0 otherwise

where D 1s the diameter of the circular aperture. The value of a is chosen so that the
peak antenna gain is unity. The voltage antenna gain pattern g(K ) is related to the
aperture distribution function by the Fourier transform
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gK1) = [exp (-iKL1:p) A(P) dp . (135)

With p confined to the plane of the aperture, the dot product K -p is
K, -p = krsin®sin¢ (136)

where 6 is the angle from the normal to the aperture, ¢ is the azimuth angle, k = 2n/A,
and r = Ipl. The Fourier transform then becomes

DR T
g(0) = éoj dr r | do exp (-ikr sin 8 sin @) . (137)
-

Performing the indicated integrals results in the well known form for the power beam
pattern

4J% [n(D/A)sin8)]
[r(D/A)sin@]?

G(0) = g(®)g*(6) = (138)

where J; is the Bessel function, and where G(0) = 1 when the value of a is chosan to be
the area of the aperture, tD%/4.

The 3-dB (full width at half maximum) beamwidth [i.e. G(68y/2) = 1/2] is given
by solving the equation

43x) 1
x2 = 2 (139)

with the result x = 1.616340. Assuming that the beamwidth is small so sin(0y/2) =
8y/2, the beamwidth in terms of the diameter D is

0y = 1.02899—]}5" radians . (140)

If the uniformly-weighted circular antenna beam pattern is approximated by a Gaussian
pattern with the same 3-dB beamwidth, then the o coefficients that appear in Equation
129 are

2 _ 2 _ _i_ln_zgz__ 141
Ou = v = 102899n) - (141)
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3.1.3 Uniformly Weighted Rectangular Apertures.

For uniformly-weighted rectangular apertures, the aperture weighting function
1s
Dy Dy

if lul < > and vl < 5

1
Ay) = 42 (142)
0

otherwise

where Dy and Dy are the lengths of the aperture in the u and v directions respectively.
In this case, the Fourier transform indicated in Equation 135 gives the result

G(eu,ev) = G(eu) G(ev) (143)
where G(8,) has the familiar sinz(x)/x2 form:

sin’ [n(Dy/A)sind¢]
GO = DyAsind

(144)

A similar expression holds for G(8y). The normalization a of the aperture weighting
function is just the area DD, of the rectangular antenna. The 3-dB beamwidth is given
by solving the equation

.2
_Q_lsmxzx - -12— (145)

with the result x = 1.391557. The u and v beamwidths in terms of the antenna sizes Dy
and Dy are then given by

Bou = 0.885893 2 Ov ~ 0.885893'}'— (radians) (146)
Dy Dy

assuming that sin(8,/2) = 8¢/2. If this beam pattern is approximated by a Gaussian
pattern with the same 3-dB beamwidth, the a coefficients that appear in Equation 130
are

, _(n2)D, , _ (n2)D}
% = 0.8858931)2 % = (0.885893n)7
3.2 FILTERING EQUATIONS.

(147)

The filtering equations relate the statistics of the signal at the outputs of one or
more antennas to the statistics of the signal incident on the antennas. The statistics that
are considered in this section are the mean power, frequency selective bandwidth,
decorrelation distances, and decorrelation time of the signal out of an antenna and the
cross correlation of the signals out of two separate antennas. Gaussian beam patterns
will be assumed for mathematical convenience. An elegant derivation of most of the
equations given in this section may be found in Frasier [1988].
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The severity of the filtering effects is determined by the relative size of the
standard deviation of the angle-of-arrival fluctuations g and the antenna beamwidths.
When gg is small compared to the antenna beamwidths, the signal arrives essentially at
the peak of the beam pattern, if the pointing error is small, and the filtering effects are
small. However, if Gg is large compared to the beamwidths, much of the signal arrives
at angles outside of the main lobe of the antenna beam pattern and the filtering effects
are large. Equivalently, large values of the ratio 6¢/8, correspond to situations where
the decorrelation distance of the incident signal is small compared to the antenna size
and the incident electric field as seen by the aperture is no longer a plane wave. In this
situation, the induced voltages across the face of the aperture do not add coherently
when summed together by the antenna with a loss in signal power as a result.

In the next subsections, expressions will be presented for the mean power,
frequency selective bandwidth, decorrelation time, and decorrelation distances of the
signal at the output of an antenna. Clearly the numerical value of these quantities must
be independent of the choice of coordinate systems (e.g., x-y or u-v coordinates) and
Frasier [1988] has derived expression for these quantities which are coordinate-system
independent. However evaluation of the filtering cquations requires a choice of
coordinate systems, and the x-y systems will be used here.

Before presenting the filtering equations, it is convenient to define some
quantities that are common to all these equations:

4o 4ol
Qx = 1+ Tfucosz‘{’ + -IZ_V sin?¥ (148)
X X
2 2
U 4o
Qy =1+ ?gsinz\}‘ + Tzvcosz‘}‘ (149)
y y
4(a - o)
= — i 1
Qxy 1.1, cos't sin'¥ (150)
Qo = \/Qny - Qiy - (151)

The components of the pointing vector in the x-y coordinate system are also required
and are obtained from their form in the u-v coordinate system (Egn. 131) using a
simple rotation:

Kox = 2% sin®g cos (Pgy+'¥) (152a)

K()y = %'T_C Sineo sin ((D()‘F\P) . (152b)
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3.2.1 Scattering Loss.

The mean power of the signal out of an antenna is calculated using the
expression:

oodZKJ_ oo oode
ami 197 [ 5 GKL-Ko) SK L t.0p) (153)

Pa =

which gives the result

it (. oy ki o

1
Pa = Sl ¥ Kox 1xKoy
A QOCXP{ ( Q) 4 (2)K0x xKoyly

47 2Q
(154)

The first term 1n this equation, 1/Q, is just the mean received power when the antenna
is pointed along the line-of-sight.

In the limit that both decorrelation distances are large relative to the size of the
antenna only the exponential term in the expression for P differs from unity, and the
expression for the mean received power reduces to

Limit
Ly - pa = exp [-(cdKfu + adK(y)] (155)
Qy — 00
which is equal to the antenna beam gain in the direction of the line-of-sight.
The scattering loss of the antenna in decibels is

Ls (dB) = -10logio (PA) . (156)

This loss therefore includes both the loss in the mean received power due to
scintillation and the loss due to the fact that the antenna may be pointed away from the
line-of-sight.

3.2.2 Frequency Selective Bandwidth.

The frequency selective bandwidth is defined in Section 2.8.2 in terms of the
time delay jitter of the signal. At the output of an antenna, these moments are given by

oode-L oo oode
Pa(t) = | ! Jdrn [57G(Ki-Ko) S(K1,T,0D) . (157)

Straightforward evaluation of the indicated integrals for n equal to 1 and 2 is indeed a
formidable algebraic task. However Frasier [1988] gives surprisingly simple-
appearing expressions for ¢ and the antenna-filtered value of the frequency selective
bandwidth, fA, which are independent of the choice of the coordinate system. In terms
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of the notation used in this report, the expression for fa is somewhat more complicated
and 1s

1
| Q;igﬂ 2 2

fa_ L 1)2‘9.5 ; (158
" rue we o, |
LT?+ Q§'+2Qxy+ P}

where the term P gives the effects of antenna pointing. This pointing angle term may
be written as:

P = PxKgx 5 + PyKgyy + PxyKox 15Ky 23 (159)
where

Qu22(Q3-Qy)? QxQ3,8%

Py = zQiy(l'Qx)‘* Q%Qi + Q(Z)le (160a)
Qx25(Q5-Qx)* QyQ3, 42
Py = 2Q%,(1-Qy) + ’6515 +~gg—?zl (160b)
22(02- 22 (02
Pey = Qay (Qx_l)(I_Qy)_Qiy+Qx (QEQ0 | Qe | 0

+
Qfe} Qfex
3.2.3 Decorrelation Time.

The temporal coherence function of the signal out of an antenna is given by

an |
21

. Tawp .
( fdt on &XP (-iopt) SA(Kx,Ky,T,0D) . (161)

PATA®) = | 515
In general, the temporal coherence function is complex when the pointing angle is non-
zero because antenna pointing results in a mean Doppler shift of the output signal. The
antenna-filtered decorrelation time T4 is then calculated by finding the 1/e point of
ITA(t)| with the result

T
T% - 2 : 2 L (162)
c2, . c? CxQy + CyiQx - 2CxCyQxy | 2
1 - Xt~ yl + Q(Z)
In the turbulent limit (i.e., Cx; = 0 and Cy = 0),
TA .
% =1 (Turbulent Modei) (163)
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and in the frozen-in limit (i.e., Cx; = 1 and Cyt =0)

TA Qo .
. (Frozen-in Model) (164)
To 1/Qy

It is interesting to note that the antenna-filtered decorrelation time is not
explicitly dependent on pointing angle, but does depend on the ratio of the antenna
beamwidth and the standard deviation of the angular scattering through the Q factors.
Of course as a phased array antenna beam is scanned away from boresight, the
effective aperture size will decrease thereby broadening the beamwidth and implicitly
changing the value of the filtered decorrelation time.

The mean Doppler shift A due to antenna pointing is
[Cxt(Q5-Qy)-Cy1QxyIKox &x - [Cy1(QF-Qx)-CxtQxylKoy Ly
Q0 .

This quantity is clearly equal to zero for the turbulent model. For non-zero values of
the space-time correlation coefficients, the mean Doppler shift is proportional to the
components of the pointing vector.

(165)

3.2.4 Decorrelation Distances.

The x-direction decorrelation distance of the signal out of the antenna is given by
the 1/e point of I"'A(x) where

TdKy 7. Tdop 7dK ,
PATA() = [ [dt [ == [ 57 exp (iKxx) SA(KxKy,T.0p) . (166)

A similar expression holds for [A(y). These two expression give the following results
for the decorrelation distances 2 aAx and & Ay of the signal at the antenna output:

2 Ax Qo
a Q. (167)
lx -\'Qy
lay Qo

= . (168)
ty o«

The interpretation of these quantities is that 2 ox and f Ay are the distances in the
x- or y-direction respectively that the antenna must be instantaneously displaced in
order for the normalized cross correlation of the output signal to have a value of 1/e.
As was the case for the antenna-filtered decorrelation time, these quantities do not
explicitly depend on pointing angle.
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3.3 ISOTROPIC EXAMPLE.

An isotropic example 1s presented in this section to illustrate some of the effects
of the antenna on the parameters discussed above. For this example, both the angular
scattering and the antenna beam pattern will be assumed to be isotropic, so

8 = 8y = % (169)
and
5 In2 A2
o) = ai = el (170)

Without further loss of generality, it can be assumed that the antenna is pointed in the
x-direction and that the rotation angle is zero. The components of the pointing vector
are then given by

Kox = 2{‘» sin ©, (171a)

Koy = 0 . (171b)
With these assumptions the Q factors become

, 4232
ne3 12

Qx =Q =Q =1 (172a)

Qxy = 0 . (172b)

At this point it is convenient to write the antenna beamwidth in terms of the antenna
size in order to eliminate the explicit dependence of the Q factors on carrier
wavelength:

A
0 = 2 (173)

where, for uniformly-weighted antennas,

{ 1.02899 Circular antenna
110 =

(174)
0.885893  Square antenna
The Q factor can then be written as
D2
1 +0.265 22 Circular antenna
0
Q = ) (175)
D

1 +0.358 02 Square antenna
0
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The mean received power for isotropic scattering and an isotropic antenna is

1 [ afn’Q-1) &f 1%

Pa = Q exp Q 98 D2 (176)
when the pointing angle is assumed to be small compared to one radian so sin®y is
approximately equal to 8. For a given value of 2,/D ¢:.c., for a fixed value of Q) the
effect of antenna pointing, as expected, is to mono'_aically decrease the mean received
power as the antenna beam is pointed farthci ~way from the line-of-sight. In the limit
that the decorrelation distance is much i-.ger than the antenna diameter, the Q factor
approaches unity and the mean -.ceived power is approximately equal to 1/Q
independent of pointing angle 1n other words, when the angular scattering standard
deviation 1s large compare< (o0 the antenna beamwidth and the pointing angle, the mean
power is insensitive < wne location of the beam peak relative to the line-of-sight.

The scattering loss Lg (Ls = 1/P4) for a uniformly-weighted circular antenna is
plotted in Figure 9 versus the ratio £3/D when the pointing angle of the antenna beam
is 0, 8y/2 and 6. It is assumed for this example that the beamwidth remains constant as
the beam in pointed away from the line-of-sight. When the decorrelation distance is
large compared to the antenna diameter, the curves approach the line-of-sight loss of
beam (0 dB for a pointing angle equal to zero, 3 dB for a pointing angle equal to one-
half beamwidth, and 12 dB for a pointing angle equal to a full beamwidth). When the
decorrelation distance is small compared to the antenna diameter, the angle-of-arrival
spread of the incident signal is large compared to the beamwidth, so, as mentioned
above, the scattering loss is insensitive to pointing angle as long as the pointing angle
remains within a few beamwidths of the line-of-sight. Between these two limits, the
scattering loss of a beam pointed away from the line-of-sight may actually decrease
with decreasing /D as the signal is scattered away from the line-of-sight and into the

main lobe of the antenna.

The equation for the ratio of the filtered to unfiltered frequency selective
bandwidth, fa/fy, for this isotropic example is

[ S Yl

fA Q
fo —
Q + 2a§m*(Q-1)

2 (177
2@6 o

05 D’
[t is interesting to note that when the pointing angle is zero the ratio fa/fy is equal to Q

which is also equal to the scattering loss in this case. Figure 10 shows plots of the ratio
fa/fy as a function of the ratio 2y/D for a uniformly-weighted circular antenna and for

three pointing angles.
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Figure 9.
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For an antenna pointed along the line-of-sight, the potentially beneficial effect of
antenna filtering is that the signal which is filtered out is that which arrives at
relatively large delays. It is this delayed signal that causes most of the intersymbol
interference in the detection and demodulation of wide bandwidth signals. Stated
another way, because the antenna filters out much of the delayed sis 2!, and since the
frequency selective bandwidth is an inverse measure of the signal delay spread, the
filtering increases the frequency selective bandwidth of the output signal relative to that
at the antenna input.

Clearly the situation is different if the antenna is pointed away from the line-of-
sight. The ratio fa/f; is less than unity for non-zero pointing angles and values of /D
between about 0.1 and 1.0. This implies that the standard deviation of the delay jitter
is increased by the antenna. This does not imply however that the antenna is somehow
creating more signal power at long delays than is incident on the antenna, as measured
by fo. Rather, the antenna pointed away from the line-of-sight is weighting the power
at long delays more than that at short delays with the peak weighting occurring at the
delay that corresponds to the pointing angle. The result is an increased value of the
time delay jitter standard deviation. Thus intersymbol interference effects in the
output of an antenna beam may increase as the beam is pointed away from the line-of-
sight.

Antenna filtering also affects the decorrelation time of the received signal. For
isotropic scattering and an isotropic antenna, the equation for the ratio Ta/1, reduces to

A _ VQ_
T NQ+ (C2HC2)(1-Q)

This equation is plotted in Figure 11 versus the ratio 24/D for various values of

C = VC%[ + Czy( . (179)

As discussed above, the antenna-filtered value of decorrelation time is not
explicitly dependent on the pointing angle. It does depend strongly on the model for
the temporal fluctuations. For the turbulent model (CZ, + C‘él = (), the Doppler
spectrum is independent of angle, so the signal arriving at all angles has the same
decorrelation time. Hence the filtered value of decorrelation time is equal to that of
the incident signal (i.e., TA/to = 1) for this model. For larger values of C2, + C§[ there
is coupling between the angular spectrum and the Doppler spectrum of the incident
signal. The effect of an antenna is to narrow the angular spectrum of the received
signal as shown in Figure 7. Thus when C,2u + C§I is greater than zero the antenna also
narrows the Doppler spectrum of the received signal. Because the decorrelation time
of the signal is an inverse measure of the width of the Doppler spectrum, the
decorrelation time of the signal out of the antenna increases as antenna filtering effects
increase. For the frozen-in case, Ci[ + C%t is equal to unity and TA/Tg = \f@ This
expression gives the upper limit of the antenna-filtered decorrelation time.

(178)
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The corresponding mean Doppler shift is

2ra2gCx1(Q-1) 8y ¢

WA = Q 8, D (180)

The normalized mean Doppler shift due to antenna pointing, ToA/Cx¢ , is plotted in
Figure 12 versus the ratio ko/D.
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SECTION 4
CHANNEL SIMULATION

A statistical channel simulation technique is described in this section that allows
realizations of the impulse response functions to be generated at the outputs of multiple
antennas with spatial and temporal correlation properties given by the GPSD and with
Rayleigh amplitude statistics. Realizations generated with this technique represent only
the diffractive part of the received voltage, and they are valid only under strong-
scattering conditions where the GPSD is valid and where Rayleigh statistics apply.
Under these conditions, however, they represent a solution of Maxwell's equations for
propagation of RF waves through randomly structured ionization.

The channel simulation technique for the General Model that is described here
was developed by Dr. Leon A. Wittwer of the Defense Nuclear Agency (DNA), and
has been implemented in the channel model Fortran code ACIRF (Antenna/Channel
Impulse Response Function) written by the author and Dr. Wittwer. This code is
available to qualified users through DNA.

The basic formalism used to generate statistical realizations of the channel
impulse response function without antenna effects explicitly included was first
developed by Wittwer [1980] for isotropic irregularities. Knepp [1983] extended the
technique to the case of elongated irregularities. (The elongated case corresponds to a
90 degree penetration angle and to an infinite axiai ratio.) The channel simulation
technique was further generalized by Dana [1986] to include the effects of general
anisotropic scattering and multiple antennas.

4.1 IMPULSE RESPONSE FUNCTION.

A key assumption used to generate realizations of the channel impulse response
function is that the channel is statistically stationary (in the wide sense) in space,
frequency, and time. As a consequence, the impulse response function is delta
correlated in angle, delay, and Doppler frequency. This allows the impulse response
function to be generated from white Gaussian noise in the angle, delay, and Doppler
frequency domains, and then Fourier transformed to the space and time domains. If
necessary for a particular application, the Fourier transform from delay to frequency
may be performed to obtain the channel transfer function.

The impulse response function at the output of an aperture antenna located at p
and pointed in direction K is given by taking the Fourier transform of the wave
equation solution UaA(pg,w,t) (Eqn. 121) from the frequency domain to the delay
domain with the result:

[ o]

ha(Po,T.) = [ h(p,T,t) A(p-py) exp [iKq(p-py)] d?p . (181)

This equation represents the spatial convolution of the aperture weighting function and
the imgulse response function h(p,T,t) of the signal incident on the face of the aperture.
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The channel simulation technique depends on writing h(p,T,t) in terms of
Fourier transforms from angle to space and from Doppler frequency to time. In order
to show that Equation 181 can be written in this form, first consider writing h(p,1,t) in
terms of its Fourier transforms:

o0

d’K | Tdop
= o ST ( 1 0 - )
h(p,t,t) = i (27‘)2-;[ om €XP [i(K_-p - wpt)] AK .10p) . (182)
Equation 123 gives the aperture weighting function A(p-p,) in terms of its Fourier
transform and the antenna voltage pattern g(K ). Substituting these expressions into

Equation 181 and doing the usual change in the order of integration to produce a delta
function results in

halpot) = [ o 5 [ 5 exp [i(K . po-0pv)] g(K1-Ko) A(K.,1,0D) .
(183)

This equation is used to generate realizations of the impulse response function by
first generating random samples of f(K1,1.0p) and then performing the indicated
Fourier transforms. Because of the assumption of a statistically stationary channel,
ﬁ(KL,r,wD) must be delta correlated in angle, delay, and Doppler frequency:

(ﬁ(KL,t,wD)ﬁ*(K',r‘,mb)) = S(K |,t,0p) &(K (-K") 8(1-1") 8(wp-up) (184)

The first-order amplitude statistics of the complex quantity h(p,t,t) are Rayleigh
which is a consequence of the central limit theorem. That is, h(p,t,t) represents the
summation of many scattered waves travelling in slightly different directions. Thus the
two orthogonal components of h(p,t,t) (either the in-phase and quadrature-phase
components or, in the notation used in this report, the real and imaginary parts) are
independent, zero mean, normally-distributed random variables. Consequently the
resulting amphtude is Rayleigh distributed, and the resulting phase is uniformly
distributed. Equation 181 indicates that ha(p,t,t) is the summation or integration of
weighted values of h(p,t,t) and is therefore also Rayleigh dis‘ributed (i.e. the sum of
normally-distributed random variables is itself normally distributed). Strictly speaking
the statistics of ﬁ(K;,r‘o)D) could be almost anything that obeys Equation 184, and the
central limit theorem could be invoked to argue that h(p,T,t) and ha(p,T.t) are zero-
mean, normally-distributed complex quantities. Indeed, multiple phase screen
techniques can be used to generate Rayleigh-distributed realizations of h(p,t,t) starting
with just random phase perturbations of an electric field. However, such faith in the
central limit theorem is not necessary if f(K :,7.0p) starts out as a zero-mean,
normally-distributed complex quantity. This allows many fewer points to be used in
performing discrete Fourier transforms from angle to space than would otherwise be
required to guarantee Rayleigh statistics.
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4.2 GENERATION OF REALIZATIONS.

The first step necessary to generate realizations of the impulse response function
is the evaluation of the GPSD on an angular Kx-Ky grid. Once the power in the
angular grid cells has been obtained, these quantities are used to construct random
samples of the angular spectrum of the signal. The delta-function relationship between
angle and delay (Eqn. 105) is used to relate an annulus in the Kx-Ky grid to specific
delay bins, and the translation properties of the GPSD seen in Equation 105 are used to
relate specific angles to Doppler bins. The random angular spectrum is then multiphed
by the antenna beam pattern, and a two-dimensional discrete Fourier transform (DFT)
is performed to the antenna phase center location. A final Fourier transform from the
Doppler frequency domain produces the impulse response function as a function of
time and delay. Examples of such realizations are presented in Section 5.

Before launching into a detailed discussion of the channel simulation technique, it
is useful to consider the consequences of the shifting property of the angle-Doppler
GPSD (Eqgns. 106 or 109).

4.2.1 Computationally Efficient form of the Impulse Response
Function.

The angle-Doppler GPSD in Equation 106 contains terms of the form Ky 2x -
CxiTowp and Ky fy - Cy1towp. Thus, except for the leading Gaussian term in Equation
106, the mean signal power at a non-zero Doppler frequency can be obtained from the
GPSD evaluated at zero Doppler frequency and shifted in angle by the appropriate
amount. This fact is used to reduce the computations necessary to generate realizations
of the impulse response function.

To see the consequences of the shifting property, consider the impulse response
function given by Equation 183 which is the basis of the channel simulation technique.
In continuous notation and using the delta-function relationship between angle and
delay, the rana"m angle-Doppler-delay spectrum of the signal may be written as

Ay(K2+K2)02
K.1,0p) VSKkD(KLop) ift= = - ¥=*
MK LT.0p) = EN(K 1,0D) \ SKD(K 1,0D) PU—. 155)
0 otherwise

where EN(K 1,0p) is white Gaussian noise with unity mean power and with the
properties

(En(K L,op)Ed(K',0p)) = §(K [ -K') 8(wp-wp) (186a)

it

ENK LL,op)ENK,op)) = 0 . (186b)

Now the key point to be made here is that the angle-Doppler GPSD,
SKD(Kx.Ky,mp), may be written in the form
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SKD(Kx,Ky,wp) = Sp(wp) SKC(Kx-CxiTowD/ L x,Ky-CyTown/Ly) (187)
where

Sp(wp) = \/Tzroexp[- icle } (188)
and where

SKC(KxKy) = i (189)

{" K382(1 - CQ) + K301(1 - C}) + 2CCyiKx 2xKy 1y ]
4(1 - Cd - C) '

After inserting these expressions into Equation 183, the impulse response function is

de J'de J»d(L)D

ha(pe,T,t) = exp [i(Kxxg+Kyyo-@pt)] (190)

X g(Kx-Kox,Ky-Koy) éN(Kx,Ky,(DD)

X\ Sp(®D) SKC(Kx-CxiTo®D/ £x,Ky-Cy1Te0p/Ly)

where py = (Xg,yp). Of course the delta-function relationship between angle and delay
still holds although it is not shown explicitly in this equation. The problem with this
expression as written is that Sk must be recomputed for each new Doppler frequency,
which is time consuming.

However Sk ¢ can be evaluated once at zero Doppler frequency and shifted for
non-zero frequencies. In a digital simulation this shift is most efficiently done in
discrete steps. Thus let

CX[TOOJD = mxAKx Qx + exp.x (191&)

where AKx and AKy are the angular grid cell sizes that will be used to numerically
evaluate Equation 190,

[ CaTooD

myx = th D.XAK,J (192a)
_ CyTywD 192b

my = mt'; 1,AK, | ° ( )
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and g4 and gy are the residuals after the discrete shifts. The function int [-] denotes the
integer part of the argument. Now define a shifted angle-Doppler GPSD, denoted Sks:

Sks(Kx,Ky) = Skc(Kx-CxtTowp/2x,Ky-CyTowp/Ry) . (193)

After substituting this into the equation for the impulse response function and changing
angular variables to

Kx = Ky - & (194a)
Ky = Ky -gy , (194b)
Equation 190 becomes
dKy TdKy rdop
hatpotd = |57 I I

-00

© EXP {i[(Kx+ex)xo+(Ky+€y)yo-@pti} (195)

X g(Kx+ex-Kox Ky+ey-Koy) EN(Kx+ex, Ky +y,0D) VSD(@D) SKs(Kx.Ky) -

We have ignored the residual shift in the arguments of Sks so this function is the
result of a discrete shift of the function Skc. Equation 195, in discrete form, is used to
generate the impulse response functions at the outputs of multiple antennas.

4.2.2 Discrete Evaluation of the GPSD.

The first step in generating the impulse response function at the output of an
antenna is the evaluation of the GPSD on a discrete K- Ky-wp grid. The delta-
function relationship between angle and delay is used to relate signal components
within an angular annulus to a particular delay bin. Thus at this point it is not
necessary to explicitly include delay, and the GPSD can be integrated over this
variable. In order to assure conservation of energy (or, more correctly, to conserve
signal power), the GPSD is integrated over each Kx-Ky-wp grid cell, and that power is
assignied to the center point of the cell. A procedure for efficiently performing the
three-dimensional integral is described in this subsectior:.

The two-dimensional angular and Doppler grids are defined by the equations

Kx = kxAKx (“ijz < kx < Nx/z-l) (196&)
Ky = kyAKy (-Ny/2 < ky < Ny/2-1) (196b)
wp = mMpAwWD (-Np/2 <mp < Np/2-1) . (196¢)

The requirements on the grid cell sizes AKx, AKy, and Awp and on the number of grid
cells Nx, Ny, and Np will be discussed later.
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(kx+1/2)AKx  (ky+1/2)AKy (mp+1/2)Aep
EA(kx,ky,mD) = ZTC 42&! in— SA(Kx,Ky,(l)D)
(ke-1/DAKy  (ky-1/2)AKy (mp-12)A0D
(197)

Equation 197 is completely general, but it implies that the triple integral must be
computed and stored separately for each antenna with different beamwidths or pointing
angles. If, however, it is assumed that the antenna beam pattern 1S constant across a
Kx-Ky-0p grid cell, then this equation can be approximated by

EA(kx,ky,mD) = G(kXAKX-KOXvkyAKy'KO)') EKD(kx,ky,mD) (198)

where Ekp(kx,ky.mp) is the incident signal power in the Kx-Ky-0p grid cell. The
accuracy of this approximation is addressed in Appendix C where it is shown to
conserve energy (or power) to within a small fraction of a percent.

In order to produce an efficient channel model, the quantity Ekp(kx.ky,mp)
must be readily evaluated. Therein lies a major problem of the general model.
Straightforward evaluation of Ekp requires a closed-form expression for the triple
integral:

(kx+1/2)AKx (ky+1/2)AKy (mp+1/2)A0p
dK dK dop
Exp(kx.ky,mp) = jnx ’2'# S SKD(Kx.Ky,0p)
(kx-1/2)AKx  (ky-1/2)AKy (mp-1/2)Awp
(199)

where the integrand is given by Equation 106. It is clear that the Kx-Ky and angle-
Doppler cross terms in the expression for Skp(Kx,Ky,wp) do not allow a simple closed
form expression for Exp in the general case, although such expressions can be
obtained in the frozen-in and turbulent limits.

Two “tricks™ are used to efficiently evaluate Equation 199. The first trick is to
take advantage of the translational properties of the GPSD described in the previous
subsection. The power in a Kx-Ky-0p grid cell is

(mp+1/2)A®D
dop .
Ekp(kx.ky,mp) = J or OD(OD) (200)
(mp-1/2)Awp

(kx+1/2)AK (ky+1/2)AKy
dKy de
27 2n
(kx-1/2)AK (ky-1/2)AKy

X SKC(KX-C)([T()(DD/Qx,Ky-Cy[T()UJD/Qy) .
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The key to simplifying this expression is to note that the Doppler grid cell size is
relatively small because of the large number of Doppler samples that are required to
produce a long time realization. Thus it can be assumed that Skc is constant over a
Doppler cell, and Equation 200 reduces to

Ekb(kx,ky,mp) = Ep(mp) EKC(kx-myx,ky-my) (201)
where
-1/72 1/2
Ep(mp) = %{erfc [(mo /2)170A03|)} - erfc {(mDJr /2)TOA(DDJ } . (202)

The quantity Ekc(kx-my,ky-my) is the power in a shifted Kx-Ky grid cell. Because of
the Kx-Ky cross terms in the expression for Sk ¢, an easily evaluated closed-form result
is st1ll not obtainable for Ekc.

The second trick used in the channel model technique is to note that a rotation by
the angle 9 (Eqn. 108) in the K-Ky plane produces an orthogonal form of the GPSD
which does not contain angular cross terms, and is therefore readily integrated. This
orthogonalized GPSD is given by Equation 109, which has the following form for its
angular part:

m,0 K212 K212
Skc(Kp.Kq) = S exp{- —E—Lr - —v—q~92—} . (203)
Pthq Ja - CR)(1 - C3) 4(1 - Cp)  4(1 - Cgp

The signal power in a Kp-Kg grid cell, with indices kp and kq respectively, is

Ekc(kpkq) = Ep(kp) Eq(kq)

where
kp-1/2)AKp kp+1/2)AKp 8
Ep(ky) = %{erfc {(_R_Q_LQJ erfe F_ﬁ_ﬁ__u} } _ (204)
1 - Ch W1 - ¢

A similar expression holds for Eq(kq).

Now, EKc(kp,kq) can be computed on a fine Kp-Kq grid, and the values simply
assigned to the Kx-Ky grid cell in which they fall. The Kx-Ky cell indices are
computed as follows:

kpAKpcos®d - kqAK gsin®d
ky = im[ P JCO“ZK g22g N J (205a)
_ X
. TkpAKpsin® + kqAK qcos®
ky = th -2 Aqu 4 } . (205b)
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The total power in a Kx-Ky grid cell is then the sum of all Ekc(kp,kq) values that fall
within the Kx-Ky cell. Roughly ten Kp-Kq grid cells are required within each Kx-Ky
cell for this brute-force procedure to work. Thus the Kp-Kq cell sizes are determined
by the expressions:

0.1
AKp = 206a
P ‘i cos’d sin’® J 15 ( )

(BK? T (AKy)?

aKg = O (206b)

A detailed description of the algorithms used to compute Ex c(kx-mx,ky-my) and
to shift this array for different Doppler frequencies is given in Appendix D.

4.2.3 Random Realizations.

The next step in the channel model is to generate a random realization of the
angle-Doppler spectrum of the impulse response function and to assign the spectral
components to delay bins using the delta-function relationship between angle and delay.
Discrete Fourier transforms are then performed to obtain the impulse response
function.

4.2.3.1 Assignment of Angular Spectral Components to Delay Bins. The delta-
function relationship between angle and delay (Eqn. 105) in the diffraction-limited
form of the GPSD is used to assign angular spectral components to discrete delay bins.
This form of the GPSD is non-zero only when

Av(K2+K2)02
T = y(Rxrky)ix (207)

A
T Ocoh

A straightforward approach to assigning angular spectral components to delay
bins is to compute the right-hand side of Equation 207 at the center of each Kx-Ky grid
cell and to compute the index of the delay bin using

ST AYKEHKDLG
J T AT T 4weonAT

(208)

where AT is the sample size of the delay bins. The problem with this approach is that
when the delay sample size is sufficiently small, the number of angular spectral
components that fall within a delay bin may vary substantially from one delay bin to
the next producing ragged statistics. A simple solution to this problem is to randomly
wiggle the angular grid cell centers before applying Equation 208. This spreads
angular spectral components more or less uniformly into any one of several delay bins,
and results in better agreement between the ensemble signal power in a delay bin and
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the realization power in that bin. The randomly-wiggled angular grid cell centers are
computed as

1
Kx = [kx +&u.x - ﬂ AKx (209a)

where &y x and éu‘y are independent, uniformly distributed random numbers on the
interval [0,1). These wiggled cell centers are then used to compute the corresponding j
index of the delay grid.

In this way each angular spectral component is assigned to a unique delay bin.
Because the angular spectral components are uncorrelated, this procedure also
guarantees that the impulse response function is uncorrelated from one delay bin to
another.

4.2.3.2 Discrete Representation of Impulse Response Function. The discrete
impulse response function is defined on a discrete time and delay grid defined by the

equations:
t = mAL (ne=1,2, -, Np (210a)
= JAT . (=0, 1, -+, N¢-1) (210b)

The requirements on the discrete time step At, the number to time steps Ny, the delay
sample size AT, and the number of delay bins Nt will be given in Section 4.3.

Equation 195 gives the impulse response function in terms of Fourier transforms
from the random angle-Doppler spectral components to the time domain at the location
of the phase center of each antenna. In discrete form, this cquation is

Np/2-1 Ny/2-1 Ny/2-1

oo 3o
AKXA‘( yAODAT

mD‘-ND/Z kx—'Nx/z kyz‘Ny/z

hA(_jAT,ﬂ[A[)

x exp {i{(kxAKx+€x)xo + (kyAKy+€y)yo - mpA®DNAL]}  (211)

X g(kxAK x+€X"KOXakyAKy+€y'KOy) gN(kka}’va)

x VED(mD) Exs(kAKx kyAKy) .

The normalization factor (8n3/AKXAKonJDAt) has been chosen so that hA(JAT,mADAT
represents the received signal during the delay interval jAT to (J+1)AT. As the Ky and
Ky sums are performed, Equation 208 is used to assign angular spectral components to
delay bins. Then the signal components in each delay bin are Fourier transformed
from the Doppler domain to the time domain.
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The quantity Sx(kx,ky,mp) is a complex, zero-mean, Gaussian random variable
with the properties

(En(ab,o)ER(aB.Y)) = Baa 8b.8 ey (212a)
(3n(abc)y = 0 (212b)
(En(a,be)in(a,By)) = 0 (212c)

where 8m n is the Kronecker delta symbol. A convenient method of generating the
complex, zero-meian, Gaussian random numbers is to use the following equation

ix = V-PylnEu.)) exp (2miEy ) (213)

where Sy, and Zr > are independent random numbers uniformly distributed on the
interval [0,1), and Py is the mean power of the random samples (P = (ENER) = 1 for
this application).

In comparing the discrete equation for the impulse response function with its
continuous-variable analog (Egn. 195), note that the residual shifts €4 and €y may be
ignored in the arguments of the random spectral components, &N, because shifted white
Gaussian noise is still white Gaussian noise.

4.2.3.3 Elimination of the DC Component. As written, the equation for the
discrete impulse response function (Eqn. 211) allows a Doppler spectral component
with zero-Doppler frequency (i.e. the mp = 0 component). This component will in
turn result in a DC component in the time domain realization, which is undesirable,
particularly if the DC component is large.

A simple solution to this problem is to set the zero-Doppler frequency
component of Sx(kx.kx,mp) to zero. Just doing this, however, results in reducing the

mean power in the impulse response function by the zero-Doppler frequency power,
Ep(0).

This latter problem can be simply solved by allowing the Doppler frequency bins
adjacent to zero Doppler to expand in size. Thus the first positive Doppler frequency
bin encompasses frequencies 0 to 3Amwp/2 and has power Ep(1) + Ep(0)/2. Similarly,
the first negative Doppler frequency bin encompasses frequencies 0 to -3Awp/2 and
has power Ep(-1) + Ep(0)/2. All other Doppler frequency bins encompass frequencies
(mp-1/2)Amp to (mp+1/2)Amp and have power Ep(mp).

4.3 GRIDS.

Angle and Doppler frequency grid sizes are determined by requiring that the
angular-Doppler grid encompass a large fraction, say 0.999, of the power in the GPSD
of the signal. The 0.001 error must then be allocated between the angular and Doppler
parts of the three-dimensional gnd. An arbitrary, but intuitively reasonable, allocation
15 to divide the error equally between the angular and Doppler frequency parts of the
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grid and equally between the two angular components. Thus the Doppler grid lnits
are determined by requiring that the Doppler grid encompass v0.999 of the Doppler
frequency power, and each angular grid must encompass (0.999)1/4 of the angular
power

The angular and Doppler frequency power spectra are all Gaussian. Thus each
can separately be written in the form

S(k) = \/J’tcxp[- %J (214)

where x is a normalized angle or Doppler frequency (i.e. X is equal to Kx2x or Ky 2y
or Tywp). In order for a k¥ grid to encompass a fraction {; of the signal power, it must
extend from -Kmax t0 +Kmax Where

Kmuax
L = [Sk)dx . (215)

~Kmax
This equation is easily solved for Kmax in terms of {; with the result

Kmax = 2erfl (Co) (216)

where erf-1 (-) is the inverse error function. If {, is chosen to be ¥0.999 for the
Doppler frequency grid, then

KD.umax = 2X2.4612 = 4.9224 217a)
and if , is chosen to be (0.999)1/4 for either angular grid, then
KK.max = 2%x2.5895 = 5.1790 . (217b)

A second requirement on the size of the angular, Doppler, and delay grids is that
they be defined at the output of the antennas, thereby eliminating areas of the grids that
contribute to the signal power incident on the antennas but do not contribute to the
power of the output signals because of antenna filtering. Much of the complexity of
the algorithms used to determine grid sizes is a result of this requirement, but
computing grid sizes in this way results in a substantial reduction in the size of the
grids, and therefore in computation time, when antenna filtering effects are large.

The numbers of cells in the angular (Nx and Ny), delay (Ng), and time (Ny) grids
are inputs to the channel simulation. The delay sample size (A1) and the number of
samples per decorrelation time (Ng) are also inputs. From these quantities and the
channel and antenna parameters, the angular (AKx and AKy), Doppler (Aop), and time
(At) grid cell sizes and the required number of Doppler samples (Np) are computed.
Requirements on input grid parameters and consistency checks on computed grid
parameters are described in the next subsections.
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4.3.1 Augular Grid.

Angular grid sizes are determined by the requirement that the tracuon v(0.999 =
0.9995 of the signal power after antenna bltering be contained in the two-dimensional
angular grid. First consider the Ky grid. Because of the symmetry in the angular
grid, the requirements on the Ky grid can then be obtained by analogy.

The Ky power spectrum at the output of an antenna is

}ode Tdr }od(oo

Sa(Ky) = o I G(Kx-Kxo Ky-Kyj) S(Kx. Ky, T.0p) (218)
= V% expv o Kiy - a K. - QG; K—%QJ + (Ax - ng_ijli_}_ + %
whet2
Ax = (Qx-DKpxLx + QuyKyy Ly (2192)
Ay = QuyKpxlx + (Qy-DKjyy (219b)
The limits of the Ky grid are determined by requiring that
Kx.max
CoPa = J Sa(Kx) = . (220)
-Kx max

If the coefficient of the linear Ky term in the expouent of Equation 218 is positive then
the lower limit of the integral in Equation 220 can be replaced by -e. Conversely, if
the coefficient is negative then the upper limit can be replaced by +eo. Either way, ihc
result for {j is

1 )‘( "QuKx.max 2x I/\xQ_v - Ayoxy‘ \\
So = 591+ erf | ———— - [ t
L 1_ 2\/Qy 2QyVvQy D

where erf () is the error function. Setting {, equal to (0.999)1/4 and solving for
Kx.max gives the following approximate result:

KK,max lAXQ) - AyQ’cyl

Kxmax = (2223)
LAx Q-AxQ()VQ»
Similarly, the lirtit of the Ky grid is
K : l\ Q - AxQl
Ky max = J%mﬂ + S ,,,,f‘?, R (222h)
Ay N _anV Q




The first terms in the expressions for Kx max and Ky mux give the required
extent of the grid when the antenna is pointed along the line-of-sight. The second
terms, which are non-zero only when the antenna is pointed away from the line-of-
sight. give the amount by which the grid must be extended in order for the grid to
encompass the beam.

Clearly, Kx max and Ky max depend on antenna beamwidths and pointing angles
because of the A and Q factors. If there are multiple antennas then Ky max and Ky max
must be computed for each antenna. The largest values are then used to determine the
boundaries of the angular grid.

The angular grid cell sizes can now be computed as

2K x max 417
AKX = N)( (;..;.3&)
2Ky my
ARy = TR (223b)

where the number of grid cells, Nx and Ny, are inputs to the channel model.

A reasonable minimum value for the number of Ky or Ky grid cells is 32.
However, this number may not be sufficient if there are multiple antennas with
different phase center locations. Consider the two antennas with the largest
separations, dx and dy, in the x-y plane. Because the impulse response functions at the
outputs of the two antennas are generated by discrete Fourier transforms from the
angular domain to the phase center locations of the antenna, the unambic ous distances,
2/AK « and 2m/AKy, of the DFTs must exceed the maximum antennd separations, say
hy a factor of 2. This then puts upper limits on AKx and AKy:

b )
AKy < (224a)
dx
T
AKy €y (224b)

v

It these criteria are not met, then Ny and/or Ny must he increased, thereby decreasing
AK. and/for AKy. untl they are met. The minimum required values for Noand Ny can
then be writter. as

z(fx}\x_,m.u

Ny © max 32, {225a)
m .
oo
dl\'\\.nu X
N Mgy 32 - = ‘ (225h)




4.3.2 Doppler Frequency and Time Grids.

The Doppler frequency grid size is also determined by the requirement that 99.9
percent of the signal power after antenna filtering be contained in the Doppler
frequency grid. Thus the antenna-filtered Doppler power spectrum is required. This
function is most easily obtained by noting that the temporal coherence function has the
form

o2
‘ t )
[a(t)y = Paexp - 7 +10AL
. TA

Recall from Section 3.2.3 that wa is the mean Doppler shift due to antenna pointing.
The Doppler power spectrum is then given by the equation

o) - 2 2
. — I TA (OD+WA)T
Sa(op) = [Tadt = VetaPaexp - g - (227)

The calculation of the limits on the Doppler frequency grid is exactly analogous
to that done for the angular grid. The limits of the wp grid are determined by setting

Zi equal v0.999 in the equation

WD . max
. i dwp
WPaA = Salop) ET R (228)
-OD max
Solving for g,
5 1 “TA(OD.max- 1WAl v
=501 v erf S R (229)

—

gives the following approximate result for Wp max:

K[ max
OD max = ';:*+W0)Al . (230))

The first term in this expression gives the required maximum Doppler frequency
when the antenna is pointed along the line-of-sight, and the second term is the result of
the mean Doppler shift effect of antenna pointing. If there are multiple antennas, then
D max Must be calculated for each antenna. and the largest value used to determine the
Doppler grnid size.

At this point the required number of Doppler frequencies Np is sull unspecitied.
However. because a fust Fourter transform (FFT) will be used to transtorm trom
Doppler frequency to time, the time grid requirements may be used to denve the
Doppler frequency grid cell size Awp and then the required number of Doppler
frequency samples, Np.
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Consider the requirements on the time samples. Dana {1982, 1988] has shown
that at least 10 samples per decorrelation time are required to accurately reproduce the
temporal statistics of Rayleigh fading. This 1s also @ DNA requirement on Rayleigh
Fading realizations of the impulse response function [Wittwer 1980]. The time grid
cell size is then

TA.min
At = 3]
Ng (231)

where Ny is the number of samples per decorrelation time (N must be greater than or
equal to 10), and TA min 15 the smallest value for all antennas of the filtcred
decorrelation time.

In addition, DN A requires that there be at least 100 decorrelation times in all
realizations of the antenna output impulse response function. Thus,

1()()1‘;\ max
. . P

where Ta max is the largest value for all antennas of the filtered decorrelation time. If
this condition is not met then the number of time samples Ny must be increased. It is
also necessary that Ny be equal to a power of 2 in order to use an FFT. The minimum
value of Ny is then 1024 in order to meet the requirement in Equation 232 with N
equal to 10.

Because of the FFT relationship between the time and Doppler frequency
domains, the Doppler frequency grid cell size 1s

3

Roie .
Awp = :\TA—[ ) (233)

The minimum number of Doppler frequency samples necessary for the grid to
encompdss the maximum required Doppler frequency is then given by
20p,max _ N®D,maxTA,min

' — — B
ND = Aop NG ' (23%)

In general, Np will be smaller than N; implying that fewer than N Doppler
frequency samples are required. The Doppler frequency arrays may then be zero-
padded to Ny samples before the FFT is performed. If, however, Np is greater than
N, the implication is that there are too few samples per decorrelation time, and Ny
must be increased.

The minimum number of Doppler frequency samples can be computed from

Equations 230 and 234, If all antennas are pointed along the line-of-sight, then the
minimum value of Np is

. KD.max N
NDmin = N, (235)
L |
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For realizations with 100 decorrelation times (Ny/Ng = 100), the minimum number of
Doppler samples is approximately 150. If antennas are pointed away from the line-of-
sight, the required number of Doppler samples will increase beyond 150.

4.3.3 Delay Grid.

The delay sample size 1s usually chosen on the basis of the modulation bandwidth
of the transmitted signal, and is therefore not a parameter that is under the direct
control of the channel simulation. For example, in a phase-shift keying (PSK)
application there must be at least two delay samples per channel symbol in order to
accurately simulate the transmitted frequency spectrum. The delay sample size is then
generally chosen to be equal to one-half the channel symbol period. In a frequency-
shift keying (FSK) application with frequency hopping, the delay sample size is chosen
so that the unambiguous frequency bandwidth of the impulse response function, 1/Art,
exceeds the hopping bandwidth by some comfortable margin.

The number of delay bins is an input to the channel simulation. The requirement
on both Nt and At is that the realization delay grid size NyAt encompass at least 97.5

percent of the delayed signal power at the outputs of the antennas. A somewhat smaller
percentage 1s used to define the limits of the delay grid than is used to define other grid
limits because of the slower decay of signal power with delay than with angle and
Doppler frequency (exponential decay with delay versus Gaussian decay with angle and
Doppler frequency).

The ensemble signal power in the delay bins is given by the integral

(J+1)AT

Pj = [Sa(t)dr (236)
JAT

where Sa(t) is the delay power spectral density at the output of an antenna. The
general expression for SA(T) is quite complicated when the antenna is pointed away

from the line-of-sight, and will not be given here. The reader is referred to Frasier
[1988] for details on SA(1).

The total signal power in the delay grid,
N1

PGt = Y Pj, (237)
j=0

must be greater than or equal to 0.975Pa. If not, then either Nt or AT or both must be
increased.
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SECTION §
MATCHED FILTER EXAMPLES

This section presents examples of the received voltage out of a filter matched to
a transmitted square pulse. These examples are intended to illustrate the effects of
frequency selectivity and antenna filtering on a transionospheric communications link
and to illustrate the differences in the structure of the received signal depending on
whether the frozen-in, turbulent, or general models are used to generate the impulse
response function realizations. The following calculation also illustrates how the
received voltage can be constructed from the impulse response function realizations in
a digital link simulation. Additional examples for specific system applications may be
found in Bogusch, et. al. {1981] and in Bogusch, Guigliano, and Knepp [1983].

5.1 MATCHED FILTER OUTPUT SIGNAL.

The output of a matched filter can be constructed by convolving the impulse
response function of the channel and antenna with the combined impulse response
function of the transmitter and receiver. A second approach is to construct the
combined frequency response of the transmitter, channel, antenna, and receiver and
then to Fourier transform that result to obtain the matched-filter output. This latter
approach is used for the examples presented in this section.

The starting point is to calculate the channel/antenna transfer function which is
the Fourier transform of the impulse response function:

(o e}

H(w,) = [h(t,t) exp (-iw7) dT . (238)
0

This function represeuts the response of the channel and antenna at time t to a
transmitted sinewave with radian frequency o.

For a transmitted square pulse with a chip duration T¢, the voltage out of the
matched filter at time t can be written as

0

: d
u(t,t)y = jM(o)) H(w,t) exp (10OT) 7—(;1) (239)

-0

where T is the time delay of the matched filter relative to the nominal time-of-arrival
(i.e. the time-of-arrival under benign propagation conditions). The combined
spectrum of the ransmitted square pulse and the receiver matched filter 1y

sin*(eTe/2)

Moy = T¢ - 5
S (T2

(240

The impulse response function is generated with N¢ delay samples ot size AT ~o
the discrete channel/antenna transfer function has an unambiguous frequency response
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of 2n/A1 radians. If this bandwidth is divided into N frequency samples, then the
discrete channel/antenna transfer function at time nyAt is

Ne-1
HkrAo,mAY = D h(JAT,mAUAT exp [-1jATKFA®] (241)
=0

where Aw = 2r/(NFAT). Recall that the normalization of the impulse response
function 1s such that the factor At following h(jAT,niAt) must be included. The range
of the index kf in this equation is from -NpF/2 to NE/2-1 representing a rangc of
frequencies from -NrA®/2 to (NF-1)Aw/2. Of course the number of frequency
samples must be at least as large as the number of delay samples in order for the
transfer function to preserve the information contained in the impulse response
function. However, if the number of delay samples is chosen to be the minimum
number required, then it may be necessary to select the number of frequency samples
to be larger than the number of delay samples in order to minimize aliasing (in delay)
of the matched-filter output.

The output voltage of the matched filter, as a function of time and relative delay,
is then given by

NE/2-1

AT, 2 : [sinf(kFAOTc/2) | _
\ / — —_— k
u(T,nAt) " JL (KEAGT2)? J H(krA®,nAt) exp ((krFAwT)

kp=-NF/2

(242)

If the delay samples size At of the realization of the impulse response function is
chosen to be T¢/2, then AnT¢/2 = 2r/NF and u(T,n At) represents a signal that is band-
limited to the frequency range -1/T¢ to +1/Tc. Note that the matched-filter output
ufT.1) Is unambiguous in delay over the interval from 0 to (Ng-1)AT compared to the
delay interval of 0 to (N¢-1)At for the original realization.

In the examples that follow, the chip rate R¢ is set at 1 MHz, and the random
realizations of the impulse response function are generated with a delay sample size of
T2 (Te = 1/R¢). However, the frequency selective effects depend only on the ratio of
the frequency selective bandwidth to the chip rate f/R¢. For the antenna examples. a
vniformly-weighted circular antenna and isotropic scattering are assumed. Antenna
effects then depend only on the ratio of the antenna diameter D to the decorrelation
distance ¥, and the antenna pointing angle.

5.2 FREQUENCY SELECTIVE EFFECTS.

In a high data rate communications link, the major effect of frequency selective
tading 15 intersymbol interterence. Even relatively small amounts ot delay spread can
catastrophically degrade demodulation performance in such a link using conventional
matched-hlter detection techniques.




. 4

v T

Figure 13 shows examples of the matched-filter output amplitude for three levels
of frequency selective propagation disturbances, characterized by the ratio of the
frequency selective bandwidth f;, to the chip rate Rc. The impulse response functions
were generated using the frozen-in model (Cx = 1.0 and Cy¢ = 0) and a small antenna
(i.e. D << f3). Each frame in the figure provides a three-dimensional picture of the
matched-filter output amplitude for a single transmitted pulse as a function of time
delay (abscissa) and time (scale directed into the figure). The total duration of each of
the frames is 10 decorrelation times.

In the top frame the frequency selective bandwidth is equal to the chip rate and
only a small amount of distortion is evident in the waveform (which is slightly rounded
due to band limiting at the first nulls of the signzal spectrum). The effect of fading can
be seen in this frame as the peak amplitude rises and falls with time. Some minor
distortion of the output amplitude is seen but for the most part the signal is contained
within the period of one chip. This channel is nearly-flat fading which means that all
frequency components within the signal bandwidth propagate essentially the same way
through the disturbed ionosphere. There is very little time delay spread beyond one
chip in the matched-filter output.

The middle frame in Figure 13 shows the matched-filter output amplitude for
the case were fo/R¢ is equal to 0.2. For this smaller value of the frequency selective
bandwidth, more of the signal energy is arriving with delays of more than a chip, and
there are multiple distinct peaks in the matched-filter output amplitude. It is these
structures that can cause delay tracking algorithms to lose lock and that cause
intersymbol interference which can degrade demodulation performance.

The bottom frame shows a highly disturbed case where fj is a tenth of the chip
rate. This causes signal energy to be spread over approximately eight chip periods.
When a contiguous set of pulses is transmitted, the delay spread of the received signal
results in the simultaneous reception of information from about eight previous chips
which can produce severe intersymbol interference.

An effect due to the frozen-in model that is evident in Figure 13 is that the signal
arriving at long delays varies more rapidly in time than the signal arriving at shorter
delays. A comparison of the matched-filter output amplitude generated with the
frozen-in, general, and turbulent models is shown in Figure 14 for the case where fy/R¢
is equal to 0.1. The top frame in this figure for the frozen-in model is just a
reproduction of the bottom frame in Figure 13. Again 10 decorrelation times of the
signal are plotted. The middle frame is a general model realization (Cx¢ = 0.9 and Cy
= 0), and the bottom frame is for the turbulent model (Cx; = Cyy = 0). The difference
between the top and bottom frames is that the turbulent model amplitude has the same
fading rate at all delays. It can be seen that the general model realization falls
somewhere between these two limiting cases.
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5.3 SPATIALLY SELECTIVE EFFECTS.

Spatially selective effects are important for high data rate communications links
that rely on large antennas to achieve sufficient signal-to-noise ratios for low error rate
data demodulation. Scattering loss of an antenna is a function of the size of the antenna
D relative to the decorrelation distance.

When {, 1s greater than D, the electric field is highly correlated across the face
of the antenna and the full gain of the antenna is realized. However, the antenna may
be located at a position where the incident power is in a deep fade. The solution to this
problem is to have multiple antennas physically separated by a distance larger than the
maximum decorrelation distance. The probability of having all antennas
simultaneously experience deep fades in the received power is then substantially
reduced.

The problem of spatial selectivity occurs when 2 is less than D and the electric
field is decorrelated across the face of the antenna. In this case, the induced voltages in
the antenna add noncoherently due to the random phase variations in the electric field,
and a loss of signal power, or equivalently of antenna gain, is the result. From another
perspective, this loss occurs when the angular scattering process responsible for
amplitude and phase scintillation and frequency selective effects also causes some of the
transmitted signal energy to be scattered out of the antenna beam.

Figure 15 shows examples of the matched-filter output amplitude for three levels
of spatially selective propagation disturbance, characterized by the ratio of the antenna
size to the decorrelation distance. The ratio of the frequency selective bandwidth to the
chip rate rate is 0.1, and the antenna 1s pointing along the line-of-sight. The top frame
is for the case where 2, is much greater than D, and is just a reproduction of the
bottom frame of Figure 13. The middle frame is for a 2,/D ratio of 0.5 where the
scattering loss is 3.1 dB. The effect of the antenna is to preferentially attenuate the
signal energy arriving at large angles and also at large delays and thereby to reduce the
delay spread of the output signal. In the bottom frame where 2,/D is equal to 0.2, the
output signal is almost flat with very little delay spread distortion of the matched-filter
output. Although this substantially reduces the effects of frequency selective fading,
the cost 1s an R .8-dB reduction in the average signal power.

Finally, Figure 16 shows examples of the matched-filter output amplitude for
three values of the pointing angle ®,. The ratio of the frequency selective bandwidth
to the chip rate rate is 0.1, and the ratio of decorrelation distance to antenna diameter
is 0.5. The top frame for a pointing angle of zero is just a reproduction of the middle
frame of Figure 15. The average scattering loss for this case is 3.1 dB. The bottom
two frames show the matched-filter output amplitude for pointing angles of one-half
beamwidth (©,=0,/2) with a scattering loss of 4.6 dB and one beamwidth (©,=0,) with
a scattering loss of 9.2 dB.
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Although the average scattering losses are about the same, the bottom frame of
Figure 16 (2,/D = 0.5 and ©(=6,)) and the bottom frame of Figure 15 (2,/D = 0.2 and
©,=0) are qualitatively quite different. For the case with the pointing angle equal to a
beamwidth, the received power is much more spread out in delay compared to the case
with zero pointing angle where the signal energy is concentrated near zero delay. This
1s due to the fact that the antenna pointed away from the line-of-sight has relatively
higher gain at larg-. angles and long delays and relatively lower gain at small angles
and short delays than does an antenna pointed along the line-of-sight. Thus for an
antenna pointed away from the line-of-sight, increased scattering loss does not
necessarily result in reduced frequency selective effects.
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APPENDIX A
PHASE VARIANCE DUE TO ELECTRON DENSITY FLUCTUATIONS

A relationship between the phase variance imparted on the wave as it propagates
through the ionization layer and the electron density fluctuations will be derived in this
appendix. This relationship is given by Equation 51 which was derived using the
Markov approximation. However, it will be shown here that the relationship requires
only that the layer thickness be large compared to the decorrelation distance of the
electron density fluctuations along the line-of-sight.

[t was shown in Section 2 that the total phase change of the wave as it propagates
through the fonization layer is

0 = reMne) [E(pzt) dz . (243)

The autocorrelation function of the phase fluctuations is then

L L
(O(PDO(PLL)) = (TeA(ne))? oj dz oj dz' (&(p,z,H)&(p",z',t")) (244)

where L is the thickness of the scattering layer. For spatially and temporally stationary
random electron density fluctuations, the expectation must be a function of the
differences dp=p-p’, dz=z-z' and St=t-t' only. Denoting the autocorrelation of E(p,z,t)
by Bz(6p,8z,8t) and the autocorrelation of ¢(p,t) by B¢(8p,dt), Equation 244 becomes

L L
Bo(8p,8t) = (reMne))? | dz [ dz' Be(8p,82,81) . (245)
0 0

This double integral may be reduced to a single integral by changing the order of
integration with the result

L
Bo(3p.80) = (reMne))?L | dz [1 : 'i—') B&(3.52.51) . (246)
-L

If the correlation distance of Bg(0p,0z,8t) along the z direction is small
compared to L, then Bg(8p,8z,8t) will become small before Izi/L approaches unity in

the integral, and the IzIl/L term may be ignored. The limits of the integral may then be
set to + e and the integral reduces to

Bo(3p.8t) = (reA(ne))* L [dz Be(8p.82,80) | (247)
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The remaining integral is denoted by Az(8p,5t) so the autocorrelation of the phase
fluctuations is

Bo(8p.80) = (reA(ne))” L Ae(8p,80) (248)

which is the same as the final expression in Equation 51.
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APPENDIX B
CHANNEL PARAMETERS FOR K* ELECTRON DENSITY
FLUCTUATIONS

The expansion coefficients Ay and A, are calculated in this appendix using the
guadratic approximation of the structure function Ag(p) of the electron density
fluctuations and using the delta-layer approximation. From these coefficients, the
phase variance, decorrelation distance, and the coherence bandwidth of the signal
incident on the plane of the receiver are written In terms of physical parameters.
However, these channel por:meters are computed from a disturbed ionosphere model
using the more general formalism of Wittwer [1979,1980] which accounts for the finite
thickness of the scattering region and other complicating effects. The purpose of this
appendix is only to illustrate the dependence of the channel parameters on geometrical
and electron density fluctuation parameters.

A power-law form of the PSD for the three-dimensional electron density
tluctuations 1s assumed:

R 2
SHK) = [ 249)
where
L2 0 0
L=| 0 Ly Ly, |. (250)

0 Ly, LZ

The scales Lr, Ls, Lyand Lx , Ly, Lz, Ly, are defined in Section 2.6 in terms of the
penetration angle @ and the axial ratio q. For K-L-K >> 1, S¢ is proportional to K2

Thus a K* PSD for the three-dimensional electron density fluctuations corresponds to
the n = 2 case.

The structure function Ag(p) under the delta-layer approximation is given by
Equation 71 which is reproduced here:
2K_L
@n)*

Ae(p) = Jexp (iKy-p) Se(K1,K,=0) (71)

=)

Using Equations 249 and 250 and performing the angular integral, Equation 71
reduces to

&9




o0

— -1
4VET(n) qL% (A fJo pLLp
vrl(n) qLx ¢ ne)J \/ L )K JK (251)
0

Aglp) =

I'(n-3/2) Ly (n)? (1 +KH"

~ V/?t(n-l)qLi<Anc> (n])/Z 15
= 33(n-5/2) Ly (ngy? P LRI Ko (NoLle)

where J; is the Bessel function of order 0, Kp.; is the modified Besse!l function of order
n-1, L. is a 2-2 matrix containing the x-y components of L, and L'Ll is the inverse
matrix of L.

For all values of n except n equal to 2, Ag(p) can be expanded in a power series
of the form

[}S)

f [
Az(lp) = A()ﬁl - Ay
{

t“l><
>

15
| J (252)
]

SN

where m = min (2,2n-2). For the n equal 2 case, A, does not exist unless an inner scale
2; is imposed. This is accomplished by truncating the integral over K in Equation 251
at a cutoff K = Ly/%;. For values of n greater than 2, the J; Bessel function in the

integrand of Equation 252 can be expanded, and the resulting series can be integrated
term-by-term. The first twou terms of the expansion give

\ 2Vnl(n) qL2 (An) { { L2 Y'“ } (253)
£ = + —5 LJ!
"7 T(n-3/2) Ly (ne)? i
and
{ 2 In-1 2
=X ) 1y =X
. L1+Q%} {1+(n1)ﬁ}
, = (2701 (254)
4<n-2){1 + -%} -1
L&
In the limit that n equals 2, the A, coefficient becomes
o 27 2 7
1 J ! i { L% l
Ay = 41+ 5 Injl+ =3 |- 1:. (255)
4 L | TR

This expression can be further reduced in the limit that the inner scale 1s much smaller
than the outer scale (i.e. £j << Ly) to give
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In (L¢/25)
) = *5“- . (256)

Now the phase variance, decorrelation distances, and coherence bandwidth can
be written in terms of geometrical parameters and electron density fluctuation
parameters. Using Equation 52, the phase variance due to structured ionization is

7"L2'

> SqLyxud )

O = T, M (and) (257)
where Lg 1s the thickness of the delta layer. The decorrelation distances, decorrelation

time, and coherence bandwidth are defined in Equations 79, 80 and 81 respectively.
Using these definitions,

2 15 Ly zi+z
_ = iy x4 r
b= Lﬂ(Lx/Qi)d Gy (258a)
2 Vi lhyntzn
by = [ln(Lx/Qi)d Sy (258b)
2 b T,
e 12 4
0= [ln(Lx/Qi)} ¢ (259)
and
_ Ayw(z) I‘_.i VA + Zr
@eoh = 3¢ Tn(Ly/2)) (% zizr (260)

These equations are only valid for the delta-layer approximation, for the

quadratic phase structure approximation, and for a K three-dimensional electron
density fluctuation PSD. It can be seen from the equations that the decorrelation
distances and coherence bandwidth are only weakly dependent on the inner scale.
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APPENDIX C
ACCURACY OF ANGULAR INTEGRATION TECHNIQUES

C.1 INTRODUCTION.

The mean signal power in a K¢-Ky grid cell at the output of an antenna is

: T dKy
S GKKy) SkKa Ky (261)

P

(ke-1/2DAK (ky-1/2AKy

(kx+1/2)3K,  (ky-1/2)3Ky
. }\"
f‘,,\(k(‘]\‘)) = :’_Tt

Equation 261 15 quite general, but it requires that the power in each angular bin be
calculated and stored for each antenna. This latter requirement results in
unacceptablely large arravs. However, Equation 261 can be approximated by assuming
that the antenna beam pattern varies slowly over the grid cells so G(Kx.Ky) may be
pulled out of the integral. There are several ways that this can be done. The purpose
of this appendix is to calculate the accuracy of a few approximations to Equation 261.

In order to himit the scope of this calculation, isotropic scattering and a
uniformly-weighted circular antenna will be assumed. Without further ioss of
generality, 1t can then be assumed that the antenna is pointed away from the line-of-
sight 1n the x-direction, or equivalently, that the pointing azimuth is zero. For this
case, the angular part of the GPSD 1s

SURELS RS Sl
SK(KX,K_\V) = mjexp, - 3 L (262)
and the antenna beam pattern 1s
(OQ-1)(Kv-Ko)* 25 (Q-1)K227
G(K«.Ky) = exp - 1 0 TG y"”i} (263)

where Q-1 1s proportional to the square of the ratio of ihe antenna diameter D to the
decorrelation distance:

s

4in2 D

+ DR

(1.02899m)* 45

Q=1 (264)

For this isotropic scattering and antenna case, the power at the output of the
antenna reduces to

R P T
Pa = exp - 5 (265)
AT T Q e
where @, 15 the pointing direction elevation angle and 6, is the Loamwidth of the
antenna.




The antenna-tiltered decorrelation distance, which is the same in both the - and
v-directions. 1s

1a = 4L0NQ . {266)

When the antenna 1s pointed in the Ky direction, the K« angular grid size is then given
by the expression

2 (Q-DK, KK max |
AR = & ‘Q"f"‘g+ unax ) (2674)
‘\‘Y Q LNQ

|

and the Ky angular grid size 1s

AKy = (267b)

2 TRKmax
i }

i 20\;6 |

where KK, max (Eqn. 217b) is determined by the condition that 99.9 percent of the
signal energy be in the K«-Ky grid.

The exact expression for the received power will be compared to the total power
in the grid,

Ne/2-1 Ny/2-1

PGK = > Y. Ealkeky) , (268)
kx:'Nx/z ky:'Ny/z

to compuic an Srror in the total power
Pe = ‘PA - PGk
E =1 pa

for each of the algorithms used to evaluate Equation 261.
C.2 ALGORITHMS.

The first approximation to the exact result is just Equation 261. This expression
will result in some error in the total power because of round-off errors in the
summation of the contributions from each grid cell and because of the finite size of the
angular grid. Additional error results when the beam is pointed near the edge of the
grid so part of the beam is pointed out of the grid. The magnitude of this error will be
apparent in the results of this analysis. With the assumptions of isotropic scattering and
an 1sotropic Gaussian beam pattern, the integrals indicated in Equation 261 can be
obtained in closed form with the result

94




Pa ke 2AKNQ QDK

Eikeky) = 7 erfe | 5 O (270)
L R DDARENQ QDK
-erte > - 2\“,,().. B
TRy -/ 2DAK NV Q O TRy /AR N Q
X erfe . 7 5 c-erte o 5
where erfe ) is the complementary error function, and where
Koty = (1028997 20 50 (271)
GAy = ( A K) e() D . R

The second approximation, and the one that is used in channel modeling, is
obtained by assuming that the antenna beam pattern is constant over an angular grid
cell and can theretore be pulled out of the integral. The result is the product of the
antenna beam pattern times a term that is equal to the incident power in a grid cell:

where the incident power in a grid cell is

(ke+1/2)AK (ky+1/2)8Ky
T dK, T dKy )
o 2; SK(Kx.Ky) . (273)
(ke-1/2)AK«  (ky-1/2)3Ky

El(k\,}’\)) =

The indicated integrals can again be expressed in terms of error functions:

I3

] | ke I/DAKK R “(kx+1/D)AK Ry
Eftkekyi = jferfc = g~ —erfc 5T X
l o (k- I/DIAKV 2 o kg I/ DAKG R, ‘
5 fertc e 5 : Cerfe A =R (274)

_- - - L

The advantage of this approximation is that the error function terms depend only on
the environment so they can be done once and used for all antennas thereby reducing
the required processing time and array sizes.

A third approximation to Equation 261 is similar to the previous approximation.

Rather than using the antenna gain at the center of each angular grid cell. the gain
averaged over the gnid cell is used:
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(ke+1/2)AKx  (ky+1/2)AKy

. E[d\‘.k\) ) dKK ' i dKV ~, 17 . -
[‘,*(}\X-}\)) - AK\AK'\ 2T[ 2K J(}\x,l\‘y) . (._75)

(k- 1/23AK (k- 1/2)AKy

Writing the indicated integrals in rerms of error functions gives the result:

N . i

o : 27¢
AKAKL(Q-1)E3 K

L QL [k /DAK Kl 8y VQ-T [(kx+1/2)AKK Ko 20
< erte T TR ' -erfc . 5 T
Q- 1 ARV R, VQ-1 (ky+1/2)AK 1y
®<oertc T ~ Dl - erfc - ’ e

Finally, a simple way to eliminate the problem created by Equation 261 is to do
away with the integral. This zeroth-order approximation is

. AK, Al\\,

.3 RESULTS.

The relatuve error (Equation 269) of the four algorithms is calculated for a
runge of the ratio ot the decorrelation distance to the antenna diameter. The scattering
sy of the antenna for this range of 2,/D is shown in Figure 9 for pointing angles of 0,
8,2, and 8. Figures 17, 18 and 16 show the relative errors of the four algorithms for

the same set of pointing angles. For these calculations, a 32 by 32 angular grid is used
tte. N and Ny are set equal to 32).

When the pointing angie 1s zero, Algorithm 1 (solid line) has a relatively
constant error of about 0.0005. This error is due to the fact that the size of the angular
and Doppler frequency grids are based on capturing 99.9 percent of the signal power.
The amount of power outside of the rectangular K¢-Ky grid is then v0.999 which iy
equal 10 0.9995. Both Algorithms 2 (dashed line) and 3 (dotted line) for this case have
peak errors of about 0.002 to 0.003 which occur when the angular spread of the
incident power is about equal to the antenna beamwidth (i.e., & 1s approximately equal
to D). Algorithm 4 (dash-dot-dash line) has a maximum relative error for large values
of 1,/D of about 2, which is clearly too large.

As the pointing angle increases, the maximurn error of Algorithm 1 remains
constant because the angular grid 1s expanded in the direction the antenna is pointed.
Algorithms 2 and 3 generally have errors which are close to or less than that of
Algorithm 1. The maximum error of these algorithms is less than 0.0035 for pointing
angles up to one beamwidth. When the pointing angle is equal to a beamwidth. the sign
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of the errors of Algorithms 2 and 3 change over the range of /D resulting in errors
that are smaller in magnitude than that of Algorithm 1.

Algorithm 2 generally has a slightly smaller error than Algorithm 3 over the
ranges of £,/D and pointing angles considered in this analysis. Algorithm 2 is also
simpler to implement than is Algorithm 3. Based on these results, the second
algorithm s used in channel modelling.
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Figure 17. Relative error for pointing angle of 0.
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APPENDIX D
ANGLE-DOPPLER GRID CELL POWER

This appendix describes the algorithm used to compute the angle-Doppler grid
cell power, E(kx,ky,m), from the GPSD. This quantity is computed in the channel
simulation on a grid which has a minimum of 32x32 angular cells and 150 Doppler
cells. Itis therefore necessary to have an efficient algorithm to compute the grid cell
power In order to minimized the computation time of the channel simulation.

D.1 CALCULATION OF GRID CELL POWER.

The first section of this appendix is primarily a review of material presented in
Sections 2 and 4 of this report. Implementation details of the algorithms used to
compute the angle-Doppler grid cell power are presented in the next section of this
appendix.

D.1.1 Separation of Angular and Doppler Frequency Variables.

Recall from Section 4 that the most general form for Ekp(kx.ky,mp) is given by
the expression:

(kx+1/2)AK (ky+1/2)AKy (mp+1/2)A0D

dK dK dop
Exkp(kx,ky,mp) = 2—,: _z_nx 5 SKD(Kx,Ky,0p) .
(kx-1/2)AKx (ky-1/2)AKy (mp-1/2)Aw®p
(278)
The integrand of this equation can be written in the form
SkD(Kx.Ky,0D) = Sp(®D) SKC(Kx-CxiTowp/ £x,Ky-Cy1TowD/ Ly) (279)
where
2,..2
To®
Sp(wp) = Vrtyexp { %—D } (280)
and
Tyl
Skc(KxKy) = = (281)
Vi-Ch- ¢
< exp [ KXz (1 - Gy + Kies (1 : szl)2+ 2CxiCyt KxxKy 2y
4(1 = Cx[ - Cy[)

As described in Section 4.2.2, two tricks are used to efficiently evaluate the grid
cell power. The first trick is to take advantage of the translational properties of the
GPSD. The power in a Kx-Ky-wp grid cell is
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(mp+1/2)Awp

" dop
EkD(kx,ky,mp) = J o OD(OD) (282)
(mp-1/2)Awp

(ke+1/2)AKx  (ky+1/2)AKy
dK dKy
2r 2

X SKC(Kx-CxiTwn/ L x,.Ky-CyTe0D/ Ly) .

The key to simplifying this expression is to note that the Doppler grid cell size is
relatively small because of the large number of Doppler samples that are required to
produce a long time realization. Thus it can be assumed that SKc is constant over a

Doppler cell, and Equation 281 reduces to a function of Doppler frequency times a
shifted function of angle:

EKD(kx,ky,mD) = Ep(mp) EKC(kx‘mxsky'my) (283)

where

[ (mp-1/2)TpAwD | 1/2 |
Ep(mp) = }&;ierfc L(mD /2”0 ijl - erfc {(mD+ /2)TOAU)D} f . (284)

The quantity Ekc(kx-my,ky-my) is the power in a shifted Kx-Ky grid cell where
(kx+1/2)AKx  (ky+1/2)AKy

dK dK
Ekclkeky) = Ry S SKC(KxKy) (285)
and the Doppler shift indices are given by
CxiTow
My = { Qx,:AOK?} (2863)
my = int Fyﬂ_o@_[_)l (286b)

Because of the Kx-Ky cross terms in the expression for Skc, an easily-evaluated
closed-form result is still not obtainable for Exc.

D.1.2 Evaluation of Angular Grid Cell Power on a Kp-Kq Grid.

The second trick used in the channel model technique is to note that a rotation by
the angle ¥ (Eqn. 108) in the Kx-Ky plane,
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1 | 2CK[C\[Q ‘QV _i
B = _[lln"] 3 B _—\ . (287
2 231 - Cxp - 231 - C5p) )

produces an orthogonal form of the GPSD which does not contain angular cross terms,
and is therefore readily integrated. This orthogonalized GPSD is given by Equation
109 which has the following form for its angular part:
242 2,42
miply exp |- Kpszpz Kyl W
V(I - Rl - Cd) 41 - Cpp 41 - Cqo)]

Skc(Kp.Kg) = (288)

The guantties 2p, 4, Cpt, and Cg; are given by Equations 110 and 111 in terms of the

corresponding quantities defined in the x-y coordinate system. The signal power in a
Kp-Kq grid cell is

EKC(kp,kq) = Ep(kp) Eq(kq) (289)
where
[(kp-1/2)AKp 5] +12AK
Ep(kp) = l{erfc {( prlf2) {PJ |(J’ 2 P—P” (290)
< N1 - Ch 2\/1-Cp[ J

A similar expression holds for Eq(kg).

Now, Ekc(kp,kq) can be computed on a fine Kp-Kq grid, and the values simply
assigned to the Kx-Ky grid cell in which they fall. The Kx-Ky cell indices are
computed as follows:

) kpAKpcos® - kqAKgsind

= int [L D Aqu g3! } (291a)
KoAK o8in® + kgAK 4cosd

ky = mJ patp Aqu g } (291b)

The total power in a Kx-Ky grid cell is then the sum of all Exc(kp,kq) values that fall
within the Kx-Ky cell. Roughly ten Kp-Kq grid cells are required within each Kx-Ky
cell for this brute-force procedure to work. Thus the Kp-Kq cell sizes are determined
by the expressions:

AKp = O] (292a)
| cos“Y . sin’9 ] 5
L(AKx)? 7 (AKy)?]

aKq =, P (292b)
[ sin“9 cosd |,

(AK! T (AKy)
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The size of the Kp-Kq grid is also needed before Eg c(kp,kq) can be computed.
The one-dimensional form of Kp-Kq angular power spectrum is

292
Vrdp { Kpip }

Skc(Kp) = ,
KC(Rp) \/T__—_e"p 4(1 - CY)

2 (293)
Cpt

In order that the K grid contain a fraction (o of the angular power, the grid must
extend to Kp‘max where

l\p,max

dKp Kp.max &
Lo = J Skc(Kp) 5 = erf{—"——ﬂmax =L (294)
-K . 2 1 - Cp(
p.max

Solving for Kp max gives the result:

V1 - Ch

Kp.max = XK max Lp (295a)

where KK max iS given by Equation 217b. A similar expression holds for Kq max:

V1 - Ch

Kq.max = KK.max Iq . (295b)

D.2 ALGORITHMS.

Implementation details of evaluation of Ekc(kx-mx,ky-my) are discussed in this
section. This implementation minimizes the number of computations of Ekc(kx-
myx,Ky-my) by using the shifting property for non-zero Doppler frequencies, and
minimizes the number of computations of Ekc(kp,kq) by carefully defining the region
of the Kp-K¢ grid where EKc(kx-mx,ky-my) is required.

D.2.1 Shifted Angular Grid Cell Power EKC(kx-myx,ky-my).

In a computer implementation of the channel simulation, Ekc(kx,ky) is an array
with indices

kx = -Nx/2, -Ng/2+1, -, Ny/2-1 (296a)
ky = -Ny/2, -Ny/2+1, -, Ny/2-1 . (296b)

The shifting process is then just a matter of rearranging the data within the array.
Before discussing the algorithms used to shift the Eg array, it is useful to understand
the frequency at which this shifting process will occur.

D.2.1.1 Shifting Frequency. In evaluating the discrete impulse response
function using Equation 211, the Doppler frequency discrete Fourier transform is
performed last, after the two angular DFTs. The evaluation of the Doppler frequency
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spectral components ﬁA(jAt,mDAwD) siarts at zero Doppler frequency (mp=0) and
proceeds to the maximum positive Doppler frequency (mp=Np/2-1). Spectral
components for negative values of Doppler frequency can be obtained by taking
advantage in the symmetry of the power in an angie-Doppler grid cell,
Ep(mp)Ekc(kx-mx,ky-my). Both Ep and Ekc are even functions of their arguments.
Thus Ep(-mp) is equal to Ep(mp), and EKc(kx+|mxl,ky+lmyI) is equal to Exc(-kx-
Imyl,-ky-Imyl). Hence the Doppler frequency spectral components for negative Doppler
frequencies can be evaluated using the angle-Doppler grid cell power calculated for the
corresponding positive Doppler frequencies with kxAKx and kyAKy replaced by
-kxAKx and -kyAKy in Equation 211. (The residual Doppler shifts, €x and gy, in
Equation 211 also change signs for negative Doppler frequencies.)

Now as each new Doppler frequency spectral component is computed (i.e. for

each value of mp, mp=1, 2, ---, Np/2-1), the incremental Doppler shift indices are
CxiTomDA®D
my = {[—_——“Qﬁl(x - Mx(mD-l)] (297a)
my = int {C ToMDABD ¢ 1 1)} (297b)
= - D_
y QyAKy y

where Mx(mp) and My(mp) are the cumulative shift indices

mp
> mi(mp) , My(-1)

Mx(mp) = =0 (298a)
mp=0
mp
My(mp) = Y, my(mp) , My(-1) = 0 . (298b)
mi)=0
The corresponding residual shifts are
Cx1 Aw
I M G (2992)
Cy1TompA
& = —Y‘J%%—“’—D - My(mp)AKj . (299b)

Because the normalized Doppler frequency grid cell size (TpAwp) 1s small
compared to the normalized angular grid cell sizes (£xAKx and 2yAKy) due to the fact
that there are generally more Doppler grid cells than angular grid cells (in one
dimension), the incremental Doppler shift indices my and my may be zero for several
sequential values of mp. Thus, shifting of the Exc(kx,ky) array in the x-direction is
necessary approximately every £xAKy/CxiToAwp Doppler cells, and shifting in the y-
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direction is necessary approximately every 2yAKy/CytoAwp Doppler cells. Note,
however, that the residual shifts will change for every new value of mp.

computed and that the shifted array Ekc(kx-myx,ky-my) is desired. The actual
computation of Ekc(kx.ky) for arbitrary kx and ky will be discussed in the next
subsection.

For non-negative values of Cy; and Cy,, the incremental Doppler shift indices mx
and my will also be non-negative. However, the general model puts no restrictions on
the signs or the space-time correlation coefficients as long as the square root of the sum
of the squares of these coefficients is between zero and one. Therefore, a completely
general algorithm must include the possibility of positive and negative values of the
incremental Doppler shifts.

Now assume that Egc(kx-my.ky) is desired where my i$ positive. An algorithm
that performs this shifting 1s

Ekc(Nx/2-1.ky) « Ekc(Nx/2-1-my.ky)
Ekc(Nx/2-2.ky) — Exc(Nx/2-2-myky)

. (300)

EKC('NX/:Z'HTI)(.ky) «— EKC(-NX/Z,ky) .

Note that after the shifting, Ekc(-Nx/2.ky) through Ekc(-Nx/2+my-1,ky) have not
been defined. These grid cell powers will then need to be computed after the shifting
is performed.

If my is negative, a shifting algorithm is
Ekc(-Nx/2.ky) — Ekc(-Nx/2-my.ky)
EKc(-Nx/2+1,ky) « EKC(-Nx/2+1-my,ky)

. (301)

EKC(Nx/2-1+my ky) & Ekc(Nx/2-1ky) .

Note that arter the shifting, Exc(Nx/2+my,ky) through Ekc(Nx/2-1ky) have not been
defined and will need to be computed.

Similar algorithms can be defined to shift Ekc(Nxky+my) by positive or
negative my. The algorithm for computing Ekc(kx.ky) is discussed next.
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D.2.2  Angular Grid Cell Power EK(C(kx,ky) .

Depending on the Doppler frequency, Egc may be computed over all or part of
the Ky-Ky grid. When the Doppler frequency is zero and Exc is computed for the
first ime, then Egc 1s computed over the entire angular grid. However, for positive
values of the Doppler frequency, Ekc 1s obtained by shifting and new values of EK ¢
are required only in a small region of the Kx-Ky grid. Angular grid cell power values
{or negative Doppler frequencies are obtained directly from the corresponding positive
Doppler frequency values, and no new calculations of Eg¢ are required.

This section describes an algorithm for computing Exc(kx,ky) with arbitrary
limits on the indices. In general the limits on ky and ky are kx ; to kx ; and ky , to
Ky.2. When EKc is compuied for the first time,

kx, = -Ny/2 (302a)
keo = Ny/2-1 (302b)
ky, = -Ny/2 (302¢)
kyo = Ny/2-1 (302d)

and afterward,
( -Nx/2 if mgx >0
kX,l = 1 . (3033)
\ Nyx/2+my if my <0

(-Nx/2+mx-1  if mx > 0

ke, = 4 (303b)
5T N2 if mg <0
ky, =9 ) (303¢c)
’ \ Ny/2+my if my < 0

-Ny/2+my-1 ifmy >0

y y y

ky, = { _ (303d)

Ny/z'l 1f my < O

D.2.2.1 Kp-Kq Regions, Given these limits, the first task is to compute the Kx-
Ky region on the Kp-Kq grid defined by the limits. This rectangular region is defined
by the four points (Kx ,Ky.1), (Kx,1,Ky 1), (Kx,2,Ky,}), and (Kx ;,Ky ) where

1
Kx, = {kx‘l T Mx(mD)} AKx (304a)
Kx2 = {kx.l + 15 Mx(mD)} AKy (304b)
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1 1
Ky, - 5- M)-(m[)) AKy

The corresponding Kp-Ky coordinates are
Kpi = Kxgcos® + Ky, sin 9
Kp: = Kxicos ¥ +Ky,sind
Kpa = Kxz2cos ¥ +Ky,sind
Kps = Kxpcos ¥ + Ky, sind
Kqi = Ky cos % - Ky ;sind
Kq2z = Ky2co8 8 - Ky ; sin 8§
Kqs = Kyacos 8 - Ky;sin

Kqa = Kyjcos ¥ -Kx,sind .

Ky, + 15 My(mD)l AKy .

(304¢)

(304d)

(305a)
(305b)
(305¢)
(305d)
(305e)
(3051)
(305g)
(305h)

The algorithm that determines the region of the Kp-Kq plane that is encompassed
by the Kx-Ky region and that contains signal energy depends on Kp , being the smallest
Kp value. If, in fact Kp,; is less than Kp ;, then the Kp-Kq coordinates must be

renamed:
Kp = Kp,
Kq = Kq.
Kpi = Kpa,
qu = qu
Kp2 = Kps
Kq2 = Kga
Kps = Kpa
Kq3 = Kga
Kpa = Kp
Kqa = Kq
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(306b)
(306¢)
(306d)
(306¢)
(306f)
(3006g)
(306h)
(3061)
(306j)




With this ordering of the Kp-Kq coordinates, the smallest value of Kp is Kp,; and
the largest value is Kp 5. The smallest value of Kq is Kq,4 and the largest value is Kg ,.
Thus the Kx-Ky region is outside of the limits of the Kp-Kgq grid if Kp 3 < -Kp max,
Kp.1 > Kpmax, Kq.2 < Kg.max, or Kq.4 > Kq max. If none of these conditions are met,
then there is signal energy within the Kx-Ky region, and the calculation continues. If
any of these conditions are met, then the Kx-Ky region falls outside of the region in the
Kp-Kq plane where there is signal power, and there is no need to continue the
calculation.

There are nine separate cases, illustrated in Figure 20, when the overlap between
the Kx-Ky region and the Kp-Kq region containing 99.9 percent of the signal energy is
considered. The rectungle for each case corresponds to the Kx-Ky region over which
the calculation of EKc is to be done. The numbered comers correspond to the Kp-Kg
coordinates of the Kx-Ky rectangle given by Equation 305. The dashed lines illustrate
the +Kg.max limits of the Kp-Kq grid. Case 1 configurations are determined by the
condition that -Kq max < Kg,; < Kq.max. Case 2 configurations occur when this
condition is not met. The shaded areas in the figures illustrate the part of the Kp-Kg
plane bounded by the Kx-Ky region that also meet the condition -Kq,max < Kq <
Kq.mux‘

D.2.2.2 Kp-Kq_Power Centroid Lines, Once the K-Ky region on the Kp-Kq
plane has been defined, an efficient method of computing the signal power is to draw a
power centroid line across the region, as illustrated by the lines across the shaded areas
in Figure 20. In two cases (2a-1 and 2b-1), this line is colinear with the +Kgq max line.
The power in Kp-Kq grid cells is calculated for each value of Kp in the shaded regions,
by starting with the cell on the line and proceeding to larger values of Kq until the
upper Kq boundary of the shaded region is encountered. Then the power in the first
cell below the line is calculated and so on until the lower Kq boundary of the shaded
region is encountered.

The endpoints of the line depend on the case. For case 1:

Kpsarn = Kp.| (307a)
Kp.siop = Kpa (307b)
Kqsan = Kq.1 (307¢)
Kqstop = Kqus - (307d)
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For case la:
Kp.smrl
Kp.stop
Ky.start
Ky.stop

For case 1b:
Kp.start
Kp.\lop
Kq.\larl
Kyswop

For case 2a:
Kp.start
Kp.stop
Kq.starnt

Ky.stop

FFor case 2a-1:

Kp.start

Kp,slnp
Kg.start

Kg.stop

fFor case 2a-2:

Kp.start

Kp.slop

KP.I

Kpa-K
, . . p.3Rps
Kpa + (Kgmax-Kg.p) Kg.a-Kg.s

Kq.

Kq.max ‘

Kpa

, . . Kpa-Kp,
Kp.o - (Kgmax+Kq.2) Kﬁ Ky,

9t

v

Kq‘l
'Kq.m:lx .

, K 74-K >1
}\p‘] + (Kq.max'Kq.l ) ngrKi-l
Kp_3

Kg.max

Kga -

] ’ K ,4'K 1
Kp.i + (Kgmax-Kg.1) Kﬁﬁﬂ(ﬁi
. , , K 13-K 4
}\PA + (kq.mar]\qA) Kg;—'K‘S;‘

Kq.max

Kq.max .

. . Kpa-Kp,
Kp. + (Kgmax-Kg.) Kﬁ.rr\q{{

: Kp.a-Kp.:
Kp.l - (}\q.mux"'Kq,g) g Kq.2
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(308a)

(308b)

(30%¢)

(308d)

(3092)

(309b)

(309¢)
(309d)

(310a)

(310b)
(310c¢)
(310d)

(311a)

(311b)

(311¢0)
(311d)




Kastart = Kg.max (312¢)
Kgstop = -Kqmax - (312d)

FFor case 2b:

Kpsart = Kpy - (Kq,max+Kq‘\)}}§iii:]§gf: (313a)
Kpstop = Kpoa (313b)
Kg.start = ‘Kq.max (313¢)
Kgstop = Kgaa - (313d)

for case 2b-1:

Kp.,-K

Kpstan = Kpy - (Kq,max*'Kq‘))K%iz'_‘Kﬁf (3140)
: , Kps-K
Kpstop = Kpiy - (Kq,n13x+Kq,3)K%%TK;% (314b)
Kyqustart = -Kgmax (314c)
Kgswop = -Kgmax - (314d)
Finally, for case 2b-2:

Kp»-K
Kpstant = Kpy - (Kgmax+Kq.1) Kq.z‘Kq:1 (315a)
. : Kps-K
Kpstop = Kpa + (Kgmax-Kq.a) Rq.z‘Kq,Z (315b)
Kgstart = -Kg.max (315¢)
Kastop = Kgmax - (315d)

Once the endpoints of the line are defined, the slope of the line is

Kq,smprq,slart

SL = Kp.smp' p.start ° (316)

D.2.2.3 Kp:-Ky and Kx-Ky_Grid Power, The final step is to compute the Kp-Kg
gnid cell power and to assign that power to Kx-Ky grid cells within the Kx-Ky region.

The indices of the Kp grid cells within the Kx-Ky region are
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. [max(Kpstart-Kpmax) 1 . 1

kpstart = in { J‘Zaé[p M, 5 sign (Kp.slarl)J (317a)
. [min(Kp stop.Kpmax) 1 .

kp‘slop = U’lt[ 4&;% P.Max + ESlgn (Kp‘slop)} y (317b)

where sign (-) is the sign function (i.e. a function that is equal to +1 is the argument is
positive and is equal to -1 otherwise), and the maximum kg index is

. [Kgq 1.
kKgmax = int [AAIr(nqax + 5sign (Kq,max)} . (318)

The minimum and maximum functions that appear in Equation 317 constrain Kx-Ky
region to also be within the +Kp.max bounds where 99.9 percent of the signal energy
lies. The 1/2 sign (K) terms cause the integer function to round its argument in the
desired way.

Now a loop is executed over the kp index, starting at kp start and ending at
kp.stop. For each value of kp, the energy in a AKp grid cell is given by Equation 290

which is reproduced here:
M(kp-1/2)AKp 2 kp+1/2)AKp 2

1{erfc[u )28 1p - erfc [(p 2 pp}} : (290)
W1 - C4

Ep(kp) = 5
T2 W1 - cd

Corresponding to each value of kp is a range of kq values. The loop over Kq
values starts at the power centroid line, which has a Kq value of

Kq.L = Kgstan + (KpAKp - Kpstart) SL (319)

and an index of
. 1KqL 1 .
kgL = 1nt{z?<’-q-+ 7 sign (Kq,L)} . (320)

The Kq loop starts at the kq value of the line and proceeds to higher values of kq until
the limits of the Kx-Ky region are encountered, as described below. Then the
calculation is restarted at the first Kq cell below the line and kg is decremented until the
Kx-Ky region boundary is again reached. For each Kq grid cell, the signal power is

kq-1/2)AK 241 kq+1/2)AKq 2
l{erfc {‘—M—U erfe F 40/208adq ] | (321)

Eqkg) = 5
Sl Sl

and the total Kp-Kq grid cell power is just Ey(kp)Eq(ky).
p-fq po J piXpltglKy
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Finally, the Kp-Kg grid cell power is assigned to Ky-Ky grid cells, and
Ep(kp)Eq(kq) is added to the power already assigned to each K-Ky grid cell. The K-
Ky grid cell indices are computed as

- : .
kx = int ‘\kpAKpCOSﬁ - kqAI(A(;(glnﬁ + Mx(mD)AKx \| (3223)
X J
ky = int %’_kpAKpSinﬁ + kqAIZ(;gosﬁ + My(mD)AKy} . (322b)
. y

These indices are also used to stop the loop over kq. This loop is terminated whenever
kx or ky fall outside of the limits given by Equations 302 or 303. Thus when kg is
being incremented for cells above the power centroid line, the kq loop is continued as
long as kx,; < kx < kx,; and ky ; < ky <ky ;. When either of these conditions are not
met, the loop is reset to the first kq value below the line and kq is decremented as long
as kx,; < kx < kx,; and ky ) < ky < ky ;. When either of these conditions are not met,
the next value in the k; loop is executed.




ACIRF

DFT
DNA
FFT
FSK
GPSD
MHz
MRC
PSD
PSK
RF
TEC

APPENDIX E
LIST OF ACRONYMS

Antenna/channel impulse response function
Decibel

Discrete Fourier transform

Defense Nuclear Agency

Fast Fourier transform
Frequency-shift keying

Generalized power spectral density
Million Hertz (106 cycles per second)
Mission Research Corporation

Power spectral density

Phase-shift keying

Radio frequency

Total electron content
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APPENDIX F
LIST OF SYMBOLS

Symbol Page
(where first used)
A(p) = Aperture weighting function 38
a = Aperture weighting function normalization factor 45
Ax = Antenna pointing factor 70
Ay = Antenna pointing factor 70
As(p,v) = Structure function 9
Ay = Structure functon at zero offset, Az(0,0) 11
Q = Beamwidth scale factor 52
A, = Quadratic coefficient of structure function expansion 20
B = (Geomagnetic field 19
Bo(6p,0t) = Autocorrelation of the phase of the RF wave 87
Bz(8p,8z,8t) = Three-dimensional structure function 87
c = Speed of light in vacuum (2.997925x108 m/s) 4
C = Space-time correlation coefficient 18
Cpt = P-direction space-time correlation coefficient 34
Cqt = (Q-direction space-time correlation coefficient 34
Cxt = X-direction space-time correlation coefficient 21
Cyt = Y-direction space-time correlation coefficient 21
D = Circular antenna diameter 40
d = Propagation distance difference 26
Dy = Rectangular antenna size in u-direction 47
Dy = Rectangular antenna size in v-direction 47
dx = Maximum x-direction separation of antennas 71
dy = Maximum y-direction separation of antennas 71
E(r,o,t) = Complex envelope of electric field 4
e = Base of natural logarithms (2.71828:-) 4
E(r,o,t) = Electric field of RF wave 3
Ea(kx.ky) = Mean signal power in an angular grid cell at output of an
antenna 93
Ea(kx.ky,mp) = Mean signal power in an angular-Doppler grid cell at output
of an antenna 64
Er(kx.ky) = Mean incident power of angular grid cell 95
Ekc(kx.ky) = Mean signal power in an angular grid cell 65
EkD(kx.ky,mp) = Mean signal power in an angular-Doppler gnid cell 64
Ep(mp) = Mean signal power in a Doppler grid cell 65
Ep(kp) = Mean signal power in a Kp grid cell 65
Eq(kq) = Mean signal power in a Ky grid cell 65
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Symbol

Ey
E(kx.ky)
E,(kx,Ky)
Ei(kx.ky)
E,(ky ky)
erf (x)
erfc (x)
erf-1 (x)

F(z)
fa

fp

fy
£,(R)
fz( fl )

G(K )
g(K)

H(r.w,t)
H(r,m,u
H{w.t)
h(p,t.1)
h(t,t)
ﬁ(KL,t,wD)
ha(py.T,O

1

int |x]
J
Jo(x)
Ji(x)

LIST OF SYMBOLS (Continued)

Complex envelope of electric field at transmitter
Mean power of angular grid cell for algorithm 1
Mean power of angular grid cell for algorithm 2
Mean power of angular grid cell for algorithm 3
Mean power of angular grid cell for algorithm 4
Error function

Complementary error function

Inverse error function

Wittwer's F function

Antenna output frequency selective bandwidth
Doppler frequency shift

Channel frequency selective bandwidth
General function of n-dimensional vector R
General function of the function f;

Antenna power beam pattern
Antenna voltage beam pattern

Complex envelope of magnetic field

Magnetic field of RF wave

Channel transfer function

Channel impulse response function at position p
Channel impulse response function

= Fourier transform of the impulse response function

Impulse response function at antenna output

V-1

Integer function (integer part of argument)

Index of delay grid
Bessel function of zeroth order
Bessel function of first order

K-space vector

Magnitude of K

Wave number in vacuum (k=w/c)
Mean wave number in ionization

Dummy K vector

Dummy K| vector

Relative wave number (k; - k,)/2

Frequency index
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11
95
95
96
96
70
30
69

28
50
37
23

39
38

75
35
75
60
59




kq‘L
Kq.max
Kq.max
Kq.start
Kq.stop
Kqu

LIST OF SYMBOLS (Continued)

Modified Bessel function of order n-1

= Component of K| in p-q-z coordinate system

Index of Kp grid

= Limit of Kp grid

Starting point of power centroid line
Starting index of power centroid line
Stopping point of power centroid line

- Stopping index of power centroid line

= Limit of the Kp-Kgq region for calculation of Exc
= Limit of the Kp-Kgq region for calculation of Exc
= Limit of the Kp-Kq region for calculation of Exc
= Limit of the Kp-Kq region for calculation of Ekc
= Component of K in p-g-z coordinate system

= Index of Kq grid

= Power centroid line Kq value

Power centroid line Kq index
Limit of Kq grid

= Maximum Kq index
= Starting point of power centroid line

Stopping point of power centroid line

= Limit of the Kp-Kgq region for calculation of Ekc
= Limit of the Kp-Kq region for calculation of Ekc

Limit of the Kp-Kq region for calculation of Ekc

= Limit of the Kp-Kq region for calculation of Ekc

= Component of K in r-s-t coordinate system (see Fig. 2)
= Component of K in r-s-t coordinate system (see Fig. 2)
= Mean wave number (k; + k;)/2

= Component of K in r-s-t coordinate system (see Fig. 2)
= Component of K| in u-v-z coordinate system

Component of K} in u-v-z coordinate system

= Component of K| in x-y-z coordinate system

= Index of Ky grid

= Dummy Ky variable

= Limit of Ky grid

= Limit of the Kx-Ky region for calculation of Ekc

Lower limit of Ky grid index

= Limit of the K-Ky region for calculation of Ekc
= Upper limit of Ky grid index

= Component of K| in x-y-z coordinate system

= Index of Ky grid

Dummy Ky variable
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90
34
65
102
107
11
107
111
106
106
106
106
34
65
111
111
102
111
107
107
106
106
106
106
19
19
13
19
16
16
24
63
63
70
105
105
105
105
24
63

63
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LIST OF SYMBOLS (Continued)

Limit of Ky grid

Limit of the Kx-Ky region for calculation of Exc
Lower limit of Ky grid index

Limit of the Kx-Ky region for calculation of Exc
Upper limit of Ky grid index

Antenna pointing direction

Component of K; in u-v-z coordinate system
Component of K, in u-v-z coordinate system
Component of K; in x-y-z coordinate system
Component of K in x-y-z coordinate system
Mean wave number for frequency ,

= Mean wave number for frequency ®,

i

i

= X-direction decorrelation distance at antenna output
Y-direction decorrelation distance at antenna output

K vecter for position vectors in plane normal to
line-of-sight

Scattering layer thickness (see Fig. 1)
Electron density fluctuation scale size matrix
Path length along propagation direction

Decorrelation distance at antenna output

Electron density fluctuation inner scale size

= P-direction decorrelation distance

1

1]

Q-direction decorrelation distance

Striation scale size in r direction orthogonal to B
Scattering loss

Striation scale size in s direction orthogonal to B
Striation scale size in t direction parallel to B
Striation scale size in the x-y-z coordinate system
Channel x-direction decorrelation distance
Siation scale size in the x-y-z coordinate system
Channel y-direction decorrelation distance
Striation scale size in the x-y-z coordinate system
Striation scale size in the x-y-z coordinate system
Delta layer thickness

Scale size of electron density fluctuations
Minimum channel decorrelation distance

L matrix in plane normal to line-of-sight
Inverse of the matrix L

Natural logarithm
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70
106
105
106
105

38

45

45

48

48

16

89
14

94
51
51
50
34
34
19
49
19
19
20
22
20
22
20
20
14

22
90
90




Symbol

M(w)

m

max [x,y]
mp

mp

min [x,y]
my(t)

my
Mx(mp)
My
My(mp)

n
ne(r,t)

(ne)

Wi nn

| [ VI T | A | T 1 R

[ | B 1

w o nn

LIST OF SYMBOLS (Continued)

Spectrum of transmitted modulation
One-dimensional electron density fluctuation spectral index
Maximum function (equal to the larger of x and y)
Index of Doppler frequency grid

Dummy Doppler frequency index

Minimum function (equal to the smaller of x and y)
Transmitted modulation

X-direction Doppler shift index

Cumulative x-direction Doppler shift index

Y -direction Doppler shift index

Cumulative y-direction Doppler shift index

Spectral index of electron density fluctuations
Free electron density

Mean free electron density

Number of Doppler frequency grid cells
Minimum required number of Doppler frequency grid cells
Number of frequency samples

Total electron content (TEC)

Number of time samples

Index of time grid

Number of Ky grid cells

Number of Ky grid cells

Number of delay samples

Number of samples per decorrelation time

Antenna pointing effect term in filtered frequency selective
bandwidth

Mean power in the GPSD at the output of an antenna

Mean power in the jih delay grid cel,

Total power in angular grid

Total power in the delay grid

Kox coefficient in antenna pointing effect term

Koy coefficient in antenna pointing effect term

KoxKgy coefficient in antenna pointing effect term

Mean power in the GPSD

Isotropic scattering and antenna filtering effect factor
Axial ratio of striations

Antenna filtering effect factor

Antenna filtering effect factor

Antenna filtering effect factor
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75
90
71
63
103
111
36
62
103
62
103

89

63
73
76
37
67
67
63
63
67
69

50
49
74
94
74
50
50
50
27

52
20
48
48
48




%]
<
3
g

®)
S

it da il

hp]
14

S
S(K:,T,0p)
8
SaK i, 1,0p)
SA(Ky)

SA(T)
Sa(wp)
Sp(wp)
Sk(K1)
Skc(K 1)

Skp(K_,0p)
Sks(K 1)
Ski(K:,17)
SL

St(K)

S+(1)
S«p(T.0D)

S,

Sy

sign (X)

6(;_3f-o>v-’_~

LIST OF SYMBOLS (Continued)

Antenna filtering effect factor

Free space propagation distance from transmitter to receiver
General n-dimensional vector

Position vector

Magnitude of the vector p

Unit vector in propagation coordinate system (see Fig. 2)
Chip rate

Classical radius of the electron (2.8179x10-15 m)

Transport equation source term

Generalized power spectral density (GPSD)

Unit vector 1n propagation coordinate system (see Fig. 2)
GPSD of signal at output of an antenna

Angular spectrum at antenna output

Delay spectrum at antenna output

Doppler frequency spectrum at antenna output

Doppier frequency spectrum of the GPSD

Angular spectrum of the GPSD

Angular spectrum of the GPSD used in channel modelling
One-dimensional angular spectrum of the GPSD used in
channel modelling

Angular-Doppler spectrum of the GPSD

Doppler shifted version of Skc(K )

Angular-delay spectrum of the GPSD

= Slope of power centroid line

PSD of electron density fluctuations

= Delay distribution for fixed angle-of-arrival

([ T 1

Delay-Doppler scattering function
Transport equation source term 1
Transport equation source term 2
Sign function (equal to the sign of argument)

Time

Dummy time variable

Unit vector in propagation coordinate system (see Fig. 2)
Chip duration

Propagation time

Decorrelation time of striations

Time 1

Time 2
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37

46
19
76

12
24
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40
70
74
72
24
93
62

102
34
63
24

110
19
26
30

11
111

19
75
26
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Symbol

U(r,w,t)
u

A
u

u(p,t)
u(T,t)
UA(py.o,0)
Uo(p.1)

<> <

(I VO L T A (A I

Il

(I I i

i n (LI I TR

uu

i

LIST OF SYMBOLS (Continued)

Scalar envelope of electric field

Spatial coordinate in plane normal to line-of-sight
Unit vector in antenna coordinate system (see Fig. 8)
Received signal at position p and time t

Received signal at delay T and time t

Scalar envelope of electric field out of an antenna at p,
Transmitted signal

Spatial coordinate in plane normal to line-of-sight .
Unit vector in antenna coordinate system normal to Uand 2
(sec Fig. 8)

Velocity of scattering layer for frozen-in model

Mean x-position in plane normal to line-of-sight
X-coordinate in plane normal to line-of-sight

Dummy x variable

Unit vector in propagation coordinate system (see Fig. 2)
X-component of vector pg

X-coordinate of position 1 in plane normal to line-of-sight
X-coordinate of position 2 in plane normal to line-of-sight

Mean y-position in plane rormal to line-of-sight
Y-coordinate in plane normal to line-of-sight

Unit vector in propagation coordinate system (see Fig. 2)
Y-component of vector pg

Y -coordinate of position 1 in plane normal to line-of-sight
Y-coordinate of position 2 in plane normal to line-of-sight

Distance along the line-of-sight

Dummy z-distance variable

Dummy z-distance variable

Unit vector in propagation coordinate system (see Fig. 2)
Line-of-sight distance from scattering layer to receiver
(see Fig. 1)

Line-of-sight distance form transmitter to scattering layer
(see Fig. 1)

Delay parameter in the GPSD

U-direction antenna beam pattern parameter
V-direction antenna beam pattern parameter
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16
43
36
75
38
10

16

43
18

12

10
19
62
12
12

12

I
62
12
12

10
19

24
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Symbol

B(w)
B
B>

I'(n)
[(dr,dw.ot)

I(p)
Nw)

{(t)
'Ky
}\‘(r)
f(wD)
I'(r,7,0D)

Y
Fa(p,o,t)
At
Ia(x)

Aner,t)
or
At

ot

oz
dp
AT
Aw
dw
Awp
o/0f

LI T S T  { T {

LIST OF SYMBOLS (Continued)

Frequency dependence of index ot refraction
B(w,)
B(w,)

Gamma function

Two-position, two-frequency, two-time Mutual Coherence
Function

Two-position mutual ccherence function

Two-frequency mutual coherence function

Two-time mutual coherence function

Fourier transform of I'(p)

Fourier transform of I'(w)
Fourier transform of I'(t)
Fourier transform of I'(r,w,t)

Distance parameter in solution for /I\“,

Mutual coherence function at antenna output

Temporal coherence function at antenna output

Spatial coherence function at antenna output

Free space mutual coherence function

Mutual coherence function without free space contribution

Fourier transform of I',
Mutual coherence function ractor, 1 ; =1 ;13
Mutual coherence function facto:, Iy = 215

Dirac delta-function

Kronecker delta symbol

Angular grid K cell size

Angu': - zrid Kq cell size

Angular grid Ky cell size

Angular grid Ky cell size

Free electron density fluctuation

Relative position

Time sample size

Relative time

Relative distance along line-of-sight

Relative position vector in plane normal to line-of-sight
Delay sample size

Frequency grid sample size

Relative radian frequency

Doppler frequency grid cell size

Functional derivative (differential with respect to function f)
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89

17
17
17

1

17
17
40

17
38
50
51
11
11

17
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15

68
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(6T(w))
(6T(W))
(OT())

&(p.z,0)
EN(K L, 0p)

iU.x
E.v

25
SULi
§U.z

LIST OF SYMBOLS (Continued)

Dielectric constant
Ky grid shift residual

= Ky grid shift residual

Il Tl

I n

Dielectric constant fluctuation

Relative x-position in plane normal to line-of-sight
Fraction of signal power in a grid

Relative y-position in plane normal to line-of-sight

Elevation angle measured from line-of-sight

Rotation angle between x-y-z and p-q-z coordinate systems
Dispersive phase shift due to mean ionization

First derivative of phase shift due to mean ionization

Second derivative of phase shift due to mean ionization
Scattering angle at the receiver

Scattering angle at the transmitter

Scattering angle about the antenna u-axis
Scattering angle about the antenna v-axis
Scattering angle about the propagation x-axis
Scattering angle about the propagation y-axis
Fouating direction elevation angle (see Fig. 8)
Ariienna 3-dB beamwidth

Antenna 3-dB beamwidth about u-direction
Antenna 3-dB beamwidth about v-direction

Normalized grid variable Kx x, Kyly, or Toop

= Maximum value of grid variable

on wonn t

Maximum value of X for Doppler frequency grid
Maximum value of K for angular grids

Wavelength of RF wave
Asymmetry factor
Asymmetry factor

Normalized electron density fluctuation

Complex, normally-distributed, zero-mean,

unity-power random number

Uniformly distributed random number on the interval [0,1)

= Uniformly distributed random number on the interval [0,1)

i

Uniformly distributed random number on the interval [0,1)
Uniformly distributed random number on the interval {0,1)
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Symbol

TA.max
TA min
Ty

¢
o
0
D,

kg

w

wA
(J)cnh
wp

wp
WD . max
Wp
(wp)

i

LIST OF SYMBOLS (Continued)

P1 (3.141592654- )

Two-dimensional position vector in the plane normal to
line-of-sight

Dummv n vectar

Dummy o vector

Dummy p vector

Antenna position in plane normal to line-of-sight
Position 1 in plane normal to line-of-sight

Position 2 in plane normal to line-of-sight

Angle-of-arrival standard deviation
Angle-of-arrival variance about the x-axis

Angle-of-arrival variance about the y-axis

Time-of-arrival variance
Phase variance imparted on RF wave

Delay (relative time-of-arrival)
Dummy delay

Mean time-of-arrival

Mean squared time-of-armval
Antenna output decorrelation time
Maximum 1A for all antenncs
Minimum 14 for all antennas
Channel decorrelation time

Penetration angle (see Fig. 2)

Phase of propagating wave

Azimuth angle

Azimuth angle of antenna pointing c.rection (see Fig. 8)

Rotation angle (see Fig. 8)

Radian radio frequency

Mean Doppler shift at antenna output
Coherence bandwidth

Doppler radian frequency

Dummy Doppler radian frequency

Limit of wp gnd

Radian plasma frequency

Square of radian plasma frequency evaluated at
mean free electron density
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Symbol

LIST OF SYMBOLS (Continued)

Carrier radian frequency
Radian radio frequency 1
Radian radio frequency 2

Partial derivative

Gradient operator

Gradient operator for relative position coordinates
Gradient operator for mean position coordinates
Curl operator

Laplacian operator

Laplacian operator for mean position coordinates
Laplacian operator for relative position coordinates
Laplacian operator in plane normal to line-of-sight
Laplacian operator at position p,

Laplacian operator at position p,
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ATTN: PMS-42331F (D SMITH)

DEPARTMENT OF THE AIR FORCE

AFIA/INIS
ATTN: AFIA/INKS MAJ SCHROCK

AIR FORCE CTR FOR STUDIES & ANALYSIS
ATTN: AFCSA/SASCLT RITTER

AIR FORCE ELECTRONIC WARFARE CENTER
ATTN: CPT J BREWER (SAZ)
ATTN: LT M MCNEELY

Dist-2

AIR FORCE GEOPHYSICS LABORATORY
ATTN: J KLOUBACHAR
ATTN: OP/W BLUMBERG
ATTN: SANTI BASU

AIR FORCE OFFICE OF SCIENTIFIC RSCH
ATTN: AFOSR/NP

AIR FORCE SYSTEMS COMMAND
ATTN: XTTW

AIR UNIVERSITY LIBRARY
ATTN: AUL-LSE

HQ AWS, DET 3 (CSTC/WE)
ATTN: WE

NATIONAL TEST FACILITY
ATTN: NTB/JPO DR C GIESE

STRATEGIC AIR COMMAND/XRFS
ATTN: XRFS

WEAPONS LABORATORY
ATTN: NTCA
ATTN: NTCTS LTC C ROYER
ATTN: NTN
ATTN: WL/SUL

DEPARTMENT OF ENERGY

EG&G, INC
ATTN: D WRIGHT

LAWRENCE LIVERMORE NATIONAL LAB
ATTN: L-97 T DONICH

SANDIA NATIONAL LABORATORIES
ATTN: P L MATTERN, 8300

SANDIA NATIONAL LABORATORIES
ATTN: A D THORNBROUGH
ATTN: CODE 9014 R BACKSTROM
ATTN: D DAHLGREN
ATTN: DIV 2344, ROBERT M AXLINE
ATTN: ORG 9110 G CABLE
ATTN: ORG 9110 W D BROWN
ATTN: TECH LIB 3141

OTHER GOVERNMENT

CENTRAL INTELLIGENCE AGENCY
ATTN: OSWR/NED
ATTN: OSWR/SSD FOR L BERG

DEPARTMENT OF COMMERCE
ATTN: G REEVE
ATTN: J HOFFMEYER
ATTN: W UTLAUT

U S DEPARTMENT OF STATE
ATTN: PM/TMP




DEPARTMENT OF DEFENSE CONTRACTORS

AERQJET ELECTRO-SYSTEMS
ATTN: A FYMAT

AERQOSPACE CORP
ATTN: A MORSE
ATTN: BRIAN PURCELL
ATTN: C CREWS
ATTN: CRICE
ATTN: D RUDOLPH
ATTN: DR J M STRAUS
ATTN: G LIGHT
ATTN: | GARFUNKEL
ATTN: J KLUCK
ATTN: M ROLENZ

AT&T BELL LABORATORIES
ATTN: DENIS S LONGO
ATTN: JOSEPH A SCHOLL
ATTN: N BEAUCHAMP

ATLANTIC RESEARCH SERVICES CORP
ATTN: R MCMILLAN

ATMOSPHERIC AND ENVIRONMENTAL RESEARCH INC
ATTN: M KO

AUSTIN RESEARCH ASSOCIATES
ATTN: J THOMPSON

AUTOMETRIC, INC
ATTN: C LUCAS

BDM INTERNATIONAL INC
ATTN: W LARRY JOHNSON

BOM INTERNATIONAL INC
ATTN: L JACOBS

BERKELEY RSCH ASSOCIATES, INC
ATTN: J WORKMAN
ATTN: N T GLADD
ATTN: S BRECHT

BOEING CO
ATTN: G HALL

CALIFORNIA RESEARCH & TECHNOLOGY. INC
ATTN: M ROSENBLATT

CHARLES STARK DRAPER LAB, INC
ATTN: ATETEWSKI

COMMUNICATIONS SATELLITE CORP
ATTN: RICHARD A ARNDT

CONTEL FEDERAL SYSTEMS INC
ATTN: CHARLES BENNINGTON

CORNELL UNIVERSITY
ATTN: D FARLEY JR
ATTN: M KELLY

Dist-3

DNA-TR-90-9 (DL CONTINUED)

DYNETICS, INC
ATTN: WILLIAM D TEPPER

ELECTROSPACE SYSTEMS, INC
ATTN: LINDA CALDWELL/LIBRARIAN
ATTN: P PHILLIPS

EOS TECHNOLOGIES, INC
ATTN: B GABBARD
ATTN: R LELEVIER

FORD AEROSPACE CORPORATION
ATTN: PATRICIA BIRDWELL

GENERAL ELECTRIC COMPANY
ATTN: JOSEPH E STROSSER

GENERAL RESEARCH CORP INC
ATTN: JEOLL

GRUMMAN AEROSPACE CORP
ATTN: J DIGLIO

HARRIS CORPORATION
ATTN: LYMUEL MCRAE

HSS, INC
ATTN: D HANSEN

INFORMATION SCIENCE, INC
ATTN: W DUDZIAK

INSTITUTE FOR DEFENSE ANALYSES
ATTN: E BAUER
ATTN: H WOLFHARD

JAYCOR
ATTN: A GLASSMAN
ATTN: J SPERLING

JOHNS HOPKINS UNIVERSITY
ATTN: C MENG
ATTN: H G TORNATORE
ATTN: J D PHILLIPS
ATTN: R STOKES

KAMAN SCIENCES CORP
ATTN: DASIAC
ATTN: E CONRAD
ATTN: G DITTBERNER

KAMAN SCIENCES CORPORATION
ATTN: B GAMBILL
ATTN: DASIAC
ATTN: R RUTHERFORD

LOCKHEED MISSILES & SPACE CO, INC
ATTN: JHENLEY
ATTN: J KUMER
ATTN: R SEARS

LOCKHEED MISSILES & SPACE CO, INC
ATTN: CARL CRABILL
ATTN: D KREJCI




DNA-TR-90-9 (DL CONTINUED)

ATTN: DT RAMPTON
ATTN: E M DIMZCELI

LTV AEROSPACE & DEFENSE COMPANY
2CYS ATTN: LIBRARY EM-08

M I T LINCOLN LAB
ATTN: D TOWLE L-230
ATTN: | KUPIEC L-100

MARTIN MARIETTA DENVER AEROSPACE
ATTN: J BENNETT
ATTN: H VON STRUVE 11l

MAXIM TECHNOLOGIES, INC
ATTN: B RIDGEWAY
ATTN: C HUA
ATTN: J SCHLOBOHM

MCDONNELL DOUGLAS CORPORATION
ATTN: J GROSSMAN
ATTN: R HALPRIN

METATECH CORPORATION
ATTN: W RADASKY

METEOR COMMUNICATIONS CORP
ATTN: R LEADER

MISSION RESEARCH CORP
ATTN: R ARMSTRONG
ATTN: W WHITE

MISSION RESEARCH CORP
ATTN: R L BOGUSCH

MISSION RESEARCH CORP
ATTN: DAVE GUICE

MiSSION RESEARCH CORP
ATTN: B R MILNER
ATTN: C LONGMIRE
ATTN: D KNEPP
ATTN: D LANDMAN
ATTN: F FAJEN
ATTN: F GUIGLIANO
ATTN: G MCCARTOR
ATTN: K COSNER
ATTN: M FIRESTONE
ATTN: R BIGONI

2 CYS ATTN: R DANA

ATTN: R HENDRICK
ATTN: RKILB
ATTN: S GUTSCHE
ATTN: TECH LIBRARY

MITRE CORPORATION
ATTN: M HORROCKS
ATTN: R C PESC!
ATTN: W FOSTER

MITRE CORPORATION
ATTN: G CAMPARETTO

Dist-4

NORTHWEST RESEARCH ASSOC, INC
ATTN: E FREMOUW

PACIFIC-SIERRA RESEARCH CORP
ATTN: EFIELD JR
ATTN: F THOMAS
ATTN: H BRODE

PHOTOMETRICS, INC
ATTN: | L KOFSKY

PHOTON RESEARCH ASSOCIATES
ATTN: D BURWELL

PHYSICAL RESEARCH INC
ATTN: W SHIH

PHYSICAL RESEARCH INC
ATTN: A CECERE

PHYSICAL RESEARCH INC
ATTN: HFITZ

PHYSICAL RESEARCH, INC
ATTN: R DELIBERIS
ATTN: T STEPHENS

PHYSICAL RESEARCH, INC
ATTN: J DEVORE
ATTN: J THOMPSON
ATTN: R STOECKLEY
ATTN: W SCHLUETER

PHYSICS INTERNATIONAL CO
ATTN: C GILMAN

R & D ASSOCIATES
ATTN: G HOYT
ATTN: L DERAAB

R & D ASSOCIATES
ATTN: D CARLSON
ATTN: J THOMPSON

RAND CORP
ATTN: C CRAIN
ATTN: E BEDROSIAN

RAND CORP
ATTN: BBENNETT

RJO ENTERPRISES/POET FAC
ATTN: STEVEN KRAMER
ATTN: W BURNS

ROCKWELL INTERNATIONAL CORP
ATTN: RPOTTER

SCIENCE APPLICATIONS INTL CORP
ATTN: C SMITH
ATTN: D HAMLIN
ATTN: D SACHS
ATTN: L LINSON




SCIENCE APPLICATIONS INTL CORP
ATTN: H SUNKENBERG
ATTN: LIBRARY

SCIENCE APPLICATIONS INTL CORP
ATTN: S ROSENCWEIG

SPARTA INC
ATTN: D DEAN

SRI INTERNATIONAL
ATTN: R LIVINGSTON
ATTN: R T TSUNODA
ATTN: W CHESNUT
ATTN: W JAYE

STEWART RADIANCE LABORATORY
ATTN: R HUPPI

TELECOMMUNICATION SCIENCE ASSOCIATES
ATTN: R BUCKNER

TELEDYNE BROWN ENGINEERING
ATTN: J FORD
ATTN: J WOLFSBERGER, JR
ATTN: N PASSINO

TOYON RESEARCH CORP
ATTN: JISE

Dist-5

DNA-TR-90-9 (DL CONTINUED)

TRW INC
ATTN: ED SIMMONS

TRW SPACE & DEFENSE SECTOR SPACE
ATTN: D M LAYTON

USER SYSTEMS, INC
ATTN: SW MCCANDLESS, JR

UTAH STATE UNIVERSITY
ATTN: K BAKER, DIR ATMOS & SPACE SC!
ATTN: L JENSEN, ELEC ENG DEPT

VISIDYNE, INC
ATTN: J CARPENTER

FOREIGN

FOA 2
ATTN: B SJOHOLM

FOA 3
ATTN: T KARLSSON

DIRECTORY OF OTHER

BOSTON UNIVERSITY
ATTN: MICHAEL MENDILLO




